• Title/Summary/Keyword: Coherent light

Search Result 104, Processing Time 0.105 seconds

Modern Coherence Theory of Light (빛의 간섭성 이론)

  • 김기식;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.36-49
    • /
    • 1991
  • The coherence properties of electromagnetic fields are reviewed, based on both the classical and quantum theories. The elementary concepts, employed frequently in the discussion of interference phenomena, are summarized. The well-known interference phenomena are described in terms of second-order coherences. The coherence theory in space-frequency domain is introduced and the coherent mode representation is presented. The generation and propagation of coherence of light are analysed and it is shown that the coherence of light is developed as light propagates. The quantum theory goes parallel with the classical theory, via the optical equivalence theorem. There are, however, certain nonclassical characteristics of light, which may not be easily understood in classical therms. These nonclassical phenomena are believed to originate from the particle aspects of light. The quantum effect on the interfernce phenomena is analysed and finally the outlook of the future research is briefly mentioned.

  • PDF

New CO Laser Technology Offers Processing Benefits

  • Held, Andrew
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.9-13
    • /
    • 2015
  • The development of a reliable, high-power source of mind-IR laser light gives process develop important tool with unique characteristics that will significantly impact a diverse range of applications.

Laser crystallization in active-matrix display backplane manufacturing

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Fechner, Burkhard;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1261-1262
    • /
    • 2008
  • Laser-based crystallization techniques are ideally-suited for forming high-quality crystalline Si films on active-matrix display backplanes, because the highly-localized energy deposition allows for transformation of the as-deposited a-Si without damaging high-temperature-intolerant glass and plastic substrates. However, certain significant and non-trivial attributes must be satisfied for a particular method and implementation to be considered manufacturing-worthy. The crystallization process step must yield a Si microstructure that permits fabrication of thin-film transistors with sufficient uniformity and performance for the intended application and, the realization and implementation of the method must meet specific requirements of viability, robustness and economy in order to be accepted in mass production environments. In recent years, Low Temperature Polycrystalline Silicon (LTPS) has demonstrated its advantages through successful implementation in the application spaces that include highly-integrated active-matrix liquid-crystal displays (AMLCDs), cost competitive AMLCDs, and most recently, active-matrix organic light-emitting diode displays (AMOLEDs). In the mobile display market segment, LTPS continues to gain market share, as consumers demand mobile devices with higher display performance, longer battery life and reduced form factor. LTPS-based mobile displays have clearly demonstrated significant advantages in this regard. While the benefits of LTPS for mobile phones are well recognized, other mobile electronic applications such as portable multimedia players, tablet computers, ultra-mobile personal computers and notebook computers also stand to benefit from the performance and potential cost advantages offered by LTPS. Recently, significant efforts have been made to enable robust and cost-effective LTPS backplane manufacturing for AMOLED displays. The majority of the technical focus has been placed on ensuring the formation of extremely uniform poly-Si films. Although current commercially available AMOLED displays are aimed primarily at mobile applications, it is expected that continued development of the technology will soon lead to larger display sizes. Since LTPS backplanes are essentially required for AMOLED displays, LTPS manufacturing technology must be ready to scale the high degree of uniformity beyond the small and medium displays sizes. It is imperative for the manufacturers of LTPS crystallization equipment to ensure that the widespread adoption of the technology is not hindered by limitations of performance, uniformity or display size. In our presentation, we plan to present the state of the art in light sources and beam delivery systems used in high-volume manufacturing laser crystallization equipment. We will show that excimer-laser-based crystallization technologies are currently meeting the stringent requirements of AMOLED display fabrication, and are well positioned to meet the future demands for manufacturing these displays as well.

  • PDF

A Study on Design Characteristics of Artistic Space effected by Light in 'Light and Space Art' (빛과 공간예술에서 빛에 의한 공간의 표현특성에 관한 연구)

  • Suh Jeong-Yeon
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.4 s.51
    • /
    • pp.35-44
    • /
    • 2005
  • Light is the essential and symbolical entity In architecture. But the meaning of light has been changed as time has passed, and today it has plural meaning and more sophisticated role. Since 1960's 'Light and Space Art' has accomplished many successful experiments through light and space as artistic media, and they have changed the understanding of light from the electrical source to the phenomenological energy and sensual medium. And also the role of space in their works takes the more human-oriented field constituted from the coherent relationship of internal parts including human being. Light could be 'an object' and 'material' under 'Light and Space Art' artists' persistent efforts. They revealed another realm of spatial experiences such as extension-the metaphysical space, heterogeneous relationship-the complex space, and dematerialization-the illusionary space. The secondary and inclusive effects by 'Light and Space Art' can be found In the phenomenological architecture, the post-modern architecture, and the immaterial tendency of contemporary architecture. However, the more close connections between 'Light and Space Art' and the specific architectures are still left as a portion aside for the further research.

Coherent fiber-optic intrusion sensor for long perimeters monitoring

  • Choi Kyoo Nam
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.876-879
    • /
    • 2004
  • The buried fiber optic cable as a distributed intrusion sensor for detecting and locating intruders along the long perimeters is proposed. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer. Light pulses from a Er:fiber cw laser with a narrow, <3kHz-range, spectral width and a frequency drift of < 1 MHz/min are injected into one end of the fiber, and the backscattered light from the fiber is monitored with a photodetector. Results of preliminary studies, measurement of phase changes produced by pressure and seismic disturbances in buried fiber optic cables and simulation of ${\varphi}-OTDR$ response over long fiber paths, to establish the feasibility of the concept are described. The field experiments indicate adequate phase changes, more than 1t-rad, are produced by intruders on foot and vehicle for burial depths in the 0.2 m to 1 m range in sand, clay and fine gravel soils. The simulations predict a range of 10 km with 35 m range resolution and 30 km with 90 m range resolution. This technology could in a cost-effective manner provide enhanced perimeter security.

  • PDF

Analytic study on the realization of partially coherent Gaussian Schell-model beams with isotropic cross section and anisotropic degree of coherence function (등방성 빔 단면과 비등방성 공간 부분 코히어런스 특성을 갖는 가우시안 셀 모델 빔의 구현에 대한 해석적 연구)

  • Kim, Hwi;Kim, Tae-Soo;Choi, Kyung-Sik;Lee, Byung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.200-213
    • /
    • 2004
  • The realization of partially coherent Gaussian Schell-model beams with isotropic cross section and anisotropic degree of coherence function is investigated theoretically. An optical system is devised to transform diffused light generated by passing the Gaussian beam of the He-Ne laser thorough a rotating holographic diffuser to the partially coherent Gaussian Schell-model beam with isotropic cross section and anisotropic degree of coherence function. Analytic design equations are formulated and design examples are presented.

The Relation between Statistics of Input Photons and Photocounts

  • Ha, Yang;Kim, Heo-Noh;Shin, Jong-Tae;Park, Goo-Dong;Kim, Ill-Won;Kim, Tae-Soo;Kang, Hee-Dong
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.71-74
    • /
    • 2000
  • The relation between the statistics of photons in input light on a detector and the measured photocounts by the detector is discussed. The averages and variances of the photocounts are compared with the averages and variances of input photons on practical detectors having quantum efficiencies of $\mu$. This comparison was made for three kinds of inputs which include Fock state light, coherent light, and thermal light. The calculations were carried out based on the combined operator model for a detector having less-than-unit quantum efficiency.