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The relation between the statistics of photons in input light on a detector and the measured
photocounts by the detector is discussed. The averages and variances of the photocounts are
compared with the averages and variances of input photons on practical detectors having quantum
efficiencies of u. This comparison was made for three kinds of inputs which include Fock state
light, coherent light, and thermal light. The calculations were carried out based on the combined
operator model for a detector having less-than-unit quantum efficiency.

I. INTRODUCTION

The measurement of light is one of the fundamen-
tal »xperiments in various areas of science, especially
in cptcs. There are several methods for measuring
ligh:, ‘or example, a detection of intensity with one
detector, or the intensity correlation detection with
two detectors 1], according to what we are trying to
get.

Among them the most common measurement is the
dete:ct:on of light intensity with one detector. In this
method there are various kinds of detectors used, such
as thermal detectors for a high level of light intensity,
and photodetectors for a wide range of light inten-
sity Fhotodetectors are based either on the emission
of photoelectrons from photocathodes, or on changes
in tae conductivity of semiconductors due to incident
rad ation, or on photovoltaic devices where voltage is
gen:rated by the internal photoeffect.

V/hen it comes to the measurement of very low
intensity light, where nonclassical phenomena are
mme prominent, photodetectors such- as PMT’s or
ava anche photodiodes are employed. Those detectors
use the photoelectric effect and have finite quantum
effciencies less than 1. The quantum efficiency is the
average ratio of the number of counted photoelectrons
for the average photon number striking the detector
surface. Therefore the value of the quantum efficiency
cortesponds to the probability that one photon gives
rise to a photoelectron.

If we measure light with a practical detector hav-
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ing quantum efficiency less than one, the statistics,
the average and the variance of the measured pho-
tocounts can be different from the statistics of the
photons in a light beam due to the stochastic process
of detection [2]. Although the relation between the
statistics of incoming photons and photocounts are
already known by the complicated calculation of the
distribution functions [3], we’d like to show that the
exact relation can be found with a different, but sim-
ple calculation of a combined annihilation operator for
a practical detector [4].

We’d like to show that the combined operator model
can easily be applicable to any kind of photodetec-
tion. In Sec. II we derive the general relations be-
tween the statistics of the input photons and the mea-
sured photocounts by the operator calculation. Sec.
III describes the application of the general equations
to some kinds of input to arrive at specific expressions.
Discussion will be presented in Sec. IV.

II. RELATION BETWEEN THE STATISTICS
OF INCOMING PHOTONS AND
PHOTOCOUNTS

The model of a photodetector with less than unit
quantum efficiency was discussed in detail by Yuen,
Shapiro, and Yurke [5,6]. Less than unit quantum ef-
ficiency results from the presence of a mechanism by
which photons can be lost in a photodetector without
generating an observable photocount. As shown in
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FIG. 1. The schematic diagram of a combined operator
model of practical detector with the quantum efficiency p.

Ref. 5, a detector with less than unit quantum effi-
ciency can be described by a unit quantum efficiency
detector in front of which one has placed a beam split-
ter that lets a fraction g of the incoming light pass to
the detector.

When we denote @ an annihilation operator for the
input mode and ¢ an annihilation operator for the
vacuum mode, the annihilation operators for the pho-
todetectors D with quantum efficiencies of p (Fig. 1),
can be written as

&' = /pa + \/1— pb. 1)

Let us assume that we are measuring the photon
number n by the detector D with the quantum effi-
ciency of u. The photocount operator 7’ is as follows,

’fLI — &IT&I

= pata + /(1 - p)@ta +ato) + 1 — pots. (2)

When we perform the calculation of the operator ¢ for
the vacuum state |0), which generates the expectation
values of all terms containing 9, o', we are left with
the expectation value of photon number for the input
state |@) as

(0,17'|0, ) = p{glnle). 3)

Applying the commutation relation [, 9!] = 1, we can
express the expectation value of the 2nd order of the
number operator A’ :

(0,0172210, 9) = u*(gIa*|@) + (1 — p)(dlAlg). (4)

Thus the variance of photodetection at the output is
(An')? = p?(An)? + p(1 - p)(glnle), (5)

where (An)? is the variance of the input photon states.
This equation is nothing but the Burgess variance the-
orem for single light detection, which represents the
relation between the variances of photocounts and in-
put photons.

III. APPLICATION OF THE RELATIONS TO
THREE KINDS OF INPUTS

Three kinds of light, Fock state light, coherent state
light, and thermal light, will be considered as the input
|#). According to the equations above we only have to
calculate the number operator #' for the input states.

1. Fock state light

Suppose that we have Fock state light |n) incident
on the detector D as the input state |¢). We can cal-
culate the moments of 7 as

(n|fi|n) = n,
(n|A%|n) = n2. (6)

The average and the variance in this measurement are
as follows,

(') = pn,
(An')? = p(1 ~ pn. (M)
When we calculate Mandel’s Q-factor, the degree of
deviation of distribution from the average, we get
(An')?
(n')
The factor always has a negative value proportional

to the detector efficiency, irrespective of input photon
numbers.

Q:

1=—pu. (8)

2. Coherent light

Coherent light |a) is assumed to be incident on the
detector D in this case as the input state |¢). Consid-
ering the annihilation operators for the coherent state

ala) = ala), (9)
we have the expectations of moments of 7 as

(ela®|a) = |of* + |of?,
(alila) = |af, (10)

in correspondence with the commutation rules, e.g.
(a?) = ((@'a)?) = (ata) + (al’a®). The average
and the variance in this measurement follow from the
above equations

(ﬁ',) = l‘la|2’
(An')? = plaf?. (1)

The variance is exactly the same as the average, which
signifies a Poisson distribution. Thus the Q factor re-
sults in zero, irrespective of the efficiency of the de-
tector.
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3. Thermal light

Ncw we are taking thermal light as the input, which
is a single mode with the average photon number m.
The density operator for the mixed state can be de-
scribad as

n

Z Ty ek (12)

If we mweasure the photons in the mode with the de-
tectcr 1), we find after some algebra the moments of
the phcton number operator as below

() = Tr(pn) =
(A% = Tr(pnz) = 2m + m. (13)

Here we used the relation in the summation,

nz;on(n +1)C" = HEC—C)’ (14)

where C denotes 1. Therefore the average and the
varienc? in this measurement are given as

(') = pm,
(An")? = um + p’m?. (15)

Let’s check Mandel’s Q factor again,

um(l + pm)
um

Q= —1=pm. (16)

As we can see here is this equation, the value of Q is
related to the efficiency of the detector employed as
well as the input states.
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FIG. 3. The Q parameter as a function of the quantum
efficiency p for the 3 kinds of lights.



74 Journal of the Optical Society of Korea, Vol. 4, No. 2, September 2000

IV. DISCUSSION

In this paper we have shown that the relation be-
tween statistics of measured photocounts and incom-
ing photons can be derived by a combined operator
model for a detector for three different kinds of light
input. The variances of photocounts by the detec-
tors are depicted in Figs. 2(a)-(c) for the three dif-
ferent inputs; Fock state light, coherent state light,
and thermal light. The curves in Fig. 2(a) show
the variances versus the quantum efficiency of the de-
tector for the three cases of photon number state of
n = 1,50,100. They have maxima for quantum effi-
ciency of 0.5, showing symmetry for lower and higher
values of quantum efficiency.

For coherent light the variances are just propor-
tional to the efficiency of the detector employed, as
shown in Fig. 2(b). The straight lines are for the
three inputs (|a|?> = 10, 100, 200), which are exactly
the same as the averages in the photocounts. There-
fore Mandel’s Q factor is zero for the coherent state,
irrespective of the efficiency of the detectors and the
average photon numbers. That’s why coherent state
light is considered to be a reference for any other light.

In the case of thermal light, the variances depend
on the square of the efficiency [Fig. 2(c)]. As in Eq.
(15), the average photocount is always greater than
the variance, which means a photon bunching effect
takes place in the thermal inputs. Fig. 3 represents
the Q values for the three different inputs. As we
expected, the Q has a negative value in nonclassical

Fock state light, while it is positive for chaotic light,
i.e. thermal light.

As we mentioned, there are other ways to get the
statistical relations between the photocount and in-
put photons such as using Bernoulli’s binomial distri-
bution. However, we have shown that those relations
can be most easily obtained by the combined operator
model for practical detectors in this paper.
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