• Title/Summary/Keyword: Cognitive science

Search Result 3,791, Processing Time 0.031 seconds

The Effects of Scientific Inquiry Experiments Emphasizing Social Interaction (사회적 상호작용을 강조한 과학 탐구실험의 효과)

  • Kim, Ji-Young;Seong, Suk-Kyoung;Park, Jong-Yun;Choi, Byung-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.757-767
    • /
    • 2002
  • This study investigated the effects of scientific inquiry experiments emphasizing social interaction on the academic achievement, the ability for science inquiry and the learning motivation of the students. To examine the differences among the classes of scientific inquiry experiments according to the way of organizing small groups, the effects of the group in homogeneous cognitive level and the group in heterogeneous cognitive level were compared. 255 7th-graders were grouped into the treatment group and the control group. After the treatment group received the scientific inquiry experimental lessons emphasizing social interaction and the control group received traditional lessons for one year, academic achievement, ability for scientific inquiry, and learning motivation were examined. These inquiry experiments were composed of four steps which are eliciting, familiarizing, constructing and bridging. And students can interact with peers and teachers through the process of relating observed phenomena to concept, constructing experiment procedure, and eliciting results. The ANCOVA results revealed that there were significant effects of science inquiry experiments emphasizing social interaction on the academic achievement, the ability for scientific inquiry and the learning motivation of the students. The significant academic achievement of the students in most of the cognitive levels, if not all, was found and degree of improvement in the ability for scientific inquiry was lower than that in the academic achievement. Concerning the effects according to the way of organizing small groups, there were significant improvement in academic achievement and learning motivation of the group in homogeneous cognitive level compared to the group in heterogeneous cognitive level. These results indicate that social interaction in learning is important and it has positive influences on the improvement in academic achievement and ability for scientific inquiry of students.

High School Students' Understanding of Astronomical Concepts Using the Role-playing and Discussion in Small Groups (소집단 역할놀이와 토의를 통한 고등학생들의 천문개념 이해)

  • Jung, Nam-Sik;Woo, Jong-Ok;Jeong, Jin-Woo
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.1
    • /
    • pp.61-76
    • /
    • 1996
  • The purpose of this study was to apply the instructional strategies for conceptual change prescribed by Posner et al(1982) to the astronomic content domain taught in the elementary and middle school and to analyze the characteristics of students' knowledge revealed in the test before, during and after the instruction. Also, it was to investigate the intercorrelation of cognitive levels, spatial ability and science achievement. The major findings of this study are as follows: 1. Students had a great variety of misconceptions related to the motion of the moon before the instruction, that is, the phases, the names of phases and the cause of changing phases by the moon's orbit about the earth, the moon's appearance and location at the given time, the relative positions of earth, moon and sun during a lunar eclipse, the cause that a full moon is not at the line of node once a month. In the analysis of students' responses concerning the cause of changing phases of the moon and a lunar eclipse, the results indicate that the great majority of students had rote learning rather than meaningful learning in the middle school. 2. Students' reponses during the instruction concerning the changing phases of the moon and the predictive knowledge about the motions of the earth and the moon were analyzed. 1) According to the results of the test given before and after experiment, after discussion, achievement score of the whole of subjects and groups in both preformal and formal cognitive levels appeared to increase linearly. 2) There was no statistically significant differences of achievement scores before and after experiment, after discussion between preformal group and formal group in cognitive levels. 3. Distribution of achievement scores according to the whole of subjects and groups in preformal and formal cognitive levels shows that there was a statistically significant difference between pretest and posttest. 4. Types of conceptual changes concerning the cause of changing phases of the moon that occurred from pretest to posttest were classified as accommodation, incomplete accommodation, assimilation, no change and no model. Six of the seven students starting instruction with alternative frameworks didn't sustain those alternative models throughout instruction. Five of these six students accommodated completely and the last one partially. Seventy-nine percentage of students taking instruction with fragmental models assimilated correct propositions at the end of the instruction. These results suggest that conceptual change model prescribed by Posner et al(1982) has promised the meaningful learning to students taking with fragmental models, especially in cases where students with misconception enter instruction. 5. High correlation between achievement score of simple-recall items and that of written items in pretest and posttest indicates that the higher students got the score in simple-recall items the better they also performed in written items. However, there was no statistically significant differences among cognitive levels, spatial ability and science achievement in the whole of subjects and groups according to the cognitive levels.

  • PDF

Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neuroinflammation in lipopolysaccharide-induced mice

  • Cho, Min Ji;Kim, Ji Hyun;Park, Chan Hum;Lee, Ah Young;Shin, Yu Su;Lee, Jeong Hoon;Park, Chun Geun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2018
  • BACKGROUD/OBJECTIVES: Neuroinflammation plays critical role in neurodegenerative disorders, such as Alzheimer's disease (AD). We investigated the effect of three licorice varieties, Glycyrhiza uralensis, G. glabra, and Shinwongam (SW) on a mouse model of inflammation-induced memory and cognitive deficit. MATERIALS/METHODS: C57BL/6 mice were injected with lipopolysaccharide (LPS; 2.5 mg/kg, intraperitoneally) and orally administrated G. uralensis, G. glabra, and SW extract (150 mg/kg/day). SW, a new species of licorice in Korea, was combined with G. uralensis and G. glabra. Behavioral tests, including the T-maze, novel object recognition and Morris water maze, were carried out to assess learning and memory. In addition, the expressions of inflammation-related proteins in brain tissue were measured by western blotting. RESULTS: There was a significant decrease in spatial and objective recognition memory in LPS-induced cognitive impairment group, as measured by the T-maze and novel object recognition test; however, the administration of licorice ameliorated these deficits. In addition, licorice-treated groups exhibited improved learning and memory ability in the Morris water maze. Furthermore, LPS-injected mice had up-regulated pro-inflammatory proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2, interleukin-6, via activation of toll like receptor 4 (TLR4) and nuclear factor-kappa B ($NF{\kappa}B$) pathways in the brain. However, these were attenuated by following administration of the three licorice varieties. Interestingly, the SW-administered group showed greater inhibition of iNOS and TLR4 when compared with the other licorice varieties. Furthermore, there was a significant increase in the expression of brain-derived neurotrophic factor (BDNF) in the brain of LPS-induced cognitively impaired mice that were administered licorice, with the greatest effect following SW treatment. CONCLUSIONS: The three licorice varieties ameliorated the inflammation-induced cognitive dysfunction by down-regulating inflammatory proteins and up-regulating BDNF. These results suggest that licorice, in particular SW, could be potential therapeutic agents against cognitive impairment.

The Effects of Probability Activities in Thinking Science Program on the Development of Probabilistic Thinking of Elementary School Students (Thinking Science 프로그램의 확률 활동이 초등학생의 확률적 사고 신장에 미치는 효과)

  • Kim, Eun-Jung;Shin, Ae-Kyung;Lee, Sang-Kwon;Choi, Mee-Hwa;Choi, Byung-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.7
    • /
    • pp.787-793
    • /
    • 2005
  • The purposes of this study were to investigate the development of probabilistic thinking in relation to the cognitive level of elementary school students and to analyze the effects of probability activities in Thinking Science(TS) program on the development of probabilistic thinking. 152 6th grade elementary school students compiled the sample group which was divided into an experimental group and a control group. Probability activities in TS program were used with the experimental group, while the normal curriculum was conducted with the control group. Both the experimental and control group were assessed with Science Reasoning Task II and a probabilistic thinking test before execution of this investigation and were post-tested with probabilistic thinking test after the project period was complete. Results of this study showed that the students in the concrete operational stage and transitional stage used subjective strategy together with quantitative strategy in probability problem-solving, and students in the early formal operational stage used quantitative strategy in probability problem-solving. It was also found that the higher the cognitive level of students, the higher the probabilistic thinking level. The probability activities of the TS program influenced the development of probabilistic thinking of elementary school students. Assessing the development of probabilistic thinking on the basis of the cognitive level found that the level of effectiveness was significantly higher for students in the early concrete operational stage and transitional stage than students in any other stage.

Combating Identity Threat of Machine: The effect of group-affirmation on humans' intellectual performance loss (기계의 정체성 위협에 대항하기: 집단 가치 확인이 인간의 지적 수행 저하에 미치는 효과)

  • Cha, Young-Jae;Baek, Sojung;Lee, Hyung-Suk;Bae, Jonghoon;Lee, Jongho;Lee, Sang-Hun;Kim, Gunhee;Jang, Dayk
    • Korean Journal of Cognitive Science
    • /
    • v.30 no.3
    • /
    • pp.157-174
    • /
    • 2019
  • Motivation of human individuals to perform on intellectual tasks can be hampered by identity threat from intellectual machines. A laboratory experiment examined whether individuals' performance loss on intellectual tasks appears under human identity threat. Additionally, by affirming alternative attributes of human identity, researchers checked whether group-affirmation alleviate the performance loss on intellectual tasks. This research predicted that under high social identity threat, individuals' performance loss on the intellectual tasks would be moderated by valuing alternative attributes of human identity. Experiment shows that when social identity threat is increased, human individuals affirmed alternative human attributes show higher performance on intellectual tasks than individuals non-affirmed. This effect of human-group level affirmation on performance loss did not appear in the condition of low social identity threat. Theoretical and practical implications were discussed.

Designing the Framework of Evaluation on Learner's Cognitive Skill for Artificial Intelligence Education through Computational Thinking (Computational Thinking 기반 인공지능교육을 통한 학습자의 인지적역량 평가 프레임워크 설계)

  • Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to design the framework of evaluation on learner's cognitive skill for artificial intelligence(AI) education through computational thinking. To design the rubric and framework for evaluating the change of leaner's intrinsic thinking, the evaluation process was consisted of a sequential stage with a) agency that cognitive learning assistance for data collection, b) abstraction that recognizes the pattern of data and performs the categorization process by decomposing the characteristics of collected data, and c) modeling that constructing algorithms based on refined data through abstraction. The evaluating framework was designed for not only the cognitive domain of learners' perceptions, learning, behaviors, and outcomes but also the areas of knowledge, competencies, and attitudes about the problem-solving process and results of learners to evaluate the changes of inherent cognitive learning about AI education. The results of the research are meaningful in that the evaluating framework for AI education was developed for the development of individualized evaluation tools according to the context of teaching and learning, and it could be used as a standard in various areas of AI education in the future.