• Title/Summary/Keyword: Cognitive Levels

Search Result 707, Processing Time 0.02 seconds

Differences among Sciences and Mathematics Gifted Students: Multiple Intelligence, Self-regulated Learning Ability, and Personal Traits (과학·수학 영재의 다중지능, 자기조절학습능력 및 개인성향의 차이)

  • Park, Mijin;Seo, Hae-Ae;Kim, Donghwa;Kim, Jina;Nam, Jeonghee;Lee, Sangwon;Kim, Sujin
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.697-713
    • /
    • 2013
  • The research aimed to investigate characteristics of middle school students enrolled in a science gifted education center affiliated with university in terms of multiple intelligence, self-regulated learning and personality traits. The 89 subjects in the study responded to questionnaires of multiple intelligence, self-regulated learning ability and a personality trait in October, 2011. It was found that both science and math gifted students presented intrapersonal intelligence as strength and logical-mathematical intelligence as weakness. While physics and earth science gifted ones showed spatial intelligence as strength, chemistry and biology gifted ones did intrapersonal intelligence. For self-regulated learning ability, both science and mathematics gifted students tend to show higher levels than general students, in particular, cognitive and motivation strategies comparatively higher than meta-cognition and environment condition strategies. Characteristics of personal traits widely distributed across science and mathematics gifted students, showing that each gifted student presented distinct characteristics individually. Those gifted students showing certain intelligence such as spatial, intrapersonal, or natural intelligences as strength also showed different characteristics of self-regulated learning ability and personal traits among students showing same intelligence as strength. It was concluded that science and mathematics gifted students showed various characteristics of multiple intelligences, self-regulated learning ability, and personal traits across science and mathematics areas.

Systematic Review of Driving Rehabilitation for Improving On-Road Driving (도로 주행 능력을 향상시키기 위한 운전재활의 체계적 고찰)

  • Park, Jin-Hyuck;Heo, Seo-Yoon;Seo, Jun;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.5 no.2
    • /
    • pp.35-47
    • /
    • 2016
  • Objective: The aim of this study was to identify the driving rehabilitation for on-road driving through a systematic review. Methods: We systematically examined papers published in journals from December 2014 to January 2015, using CINAH, Embase, Pubmed, PsycINFO, and The Cochrane Library. Eventually, 15 studies were included in the analyses. Results: The evidence of 15 studies was from levels I, III, and V. The subjects included in the analyses were patients with stroke(40.0%), older driver(20.0%), traumatic brain injury(20.0%), acquired brain injury(13.3%) and spinal cord injury(6.7%). The intervention types were driving simulator training(53.3%), cognitive skills training(26.6%), off-road educational training(6.7%), adaptation of assistive device(6.7%), and behind-the-wheel training(6.7%). The effects of driving rehabilitation were different depending on the types of intervention. However, driving simulator training showed significant improvement of on-road assessments in all studies included this study. Conclusions: Driving rehabilitation for on-road driving has been used in various types. Specially, the effect of the driving simulator training has been proved by many studies. Future studies are to be required with client from a range of diagnostic groups to establish evidence-based interventions and determine their effectiveness in improving on-road driving.

Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells (BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구)

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, In Sik;Yang, Seung-Ju
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease that can be described by the occurrence of dementia due to a decline in cognitive function. The disease is characterized by the formation of extracellular and intracellular amyloid plaques. Amyloid beta (Aβ) is a hallmark of AD, and microglia can be activated in the presence of Aβ. Activated microglia secrete pro-inflammatory cytokines. Furthermore, S100A9 is an important innate immunity pro-inflammatory contributor in inflammation and a potential contributor to AD. This study examined the effects of metformin and α-LA on the inflammatory response and NLRP3 inflammasome activation in Aβ- and S100A9-induced BV-2 microglial cells. Metformin and α-LA attenuated inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, metformin and α-LA inhibited the phosphorylation of JNK, ERK, and p38. They activated the nuclear factor kappa B (NF-κB) pathway and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Moreover, metformin and α-LA reduced the marker levels of the M1 phenotype, ICAM1, whereas the M2 phenotype, ARG1, was increased. These findings suggest that metformin and α-LA are therapeutic agents against the Aβ- and S100A9-induced neuroinflammatory responses.

The Effects of Korean Ginseng on Memory Loss in a Rat Models (Scopolamine 유도 치매동물모델에서 고려인삼(백삼, 홍삼 및 흑삼)의 기억력 개선 효과)

  • Kang, Shin-Jyung;Woo, Jeong-Hwa;Kim, Ae-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1190-1196
    • /
    • 2013
  • The purpose of this study was to investigate the mechanism and effects of different types of ginseng on memory improvement in an experimental rat model. In this study, SD rats were induced for memory deficits through scopolamine treatment (1 mg/kg, i.p.) then administrated with ginseng extract for 7 weeks. The rats were divided into five groups: saline (1 mL/kg, NC: negative control), white ginseng (300 mg/kg, WG), red ginseng (300 mg/kg, RG), black ginseng (300 mg/kg, BG), and scopolamine (1 mg/kg, PC: positive control). The step through latency of the BG and RG groups was significantly longer than the PC group in the retention trial of multiple trial passive avoidance test. In the spatial reference memory triads of the Morris water maze test, the latency time of BG and RG was significantly lower than the PC group. In addition, in the prove test, the time spent in the platform quadrant of BG and RG groups were significantly longer than the PC group. Brain choline acetyltransferase (ChAT) activities BG and RG groups significantly increased compared to other groups. On the other hand, the levels of malondialdehyde (MDA) were significantly lower in the BG and RG groups compared to other groups. These result suggested that black ginseng could be useful to enhance learning memory and cognitive function by regulation of cholinergic enzymes.

Analytical trends in mass spectrometry based metabolomics approaches of neurochemicals for diagnosis of neurodegenerative disorders (퇴행성신경질환의 진단을 위한 신경전달물질 대사체의 질량 분석법 동향)

  • Lee, Na-Kyeong;Jeon, Won-Jei;Jeong, Seung-Woo;Byun, Jae-Sung;Lee, Wonwoong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.355-378
    • /
    • 2017
  • Because neurochemicals are related to homeostasis and cognitive and behavioral functions in human body and because they enable the diagnosis of numerous neurodegenerative disorders, there has been increasing interest in the development of analytical platforms for neurochemical profiling in biological samples. In particular, mass spectrometry (MS)-based analytical methods combined with chromatographic separation have been widely used to profile neurochemicals in metabolic pathways. However, development of delicate sample preparation procedures and highly sensitive instrumental detection is necessary considering the trace levels and chemical instabilities of neurochemicals in biological samples. Therefore, in this review, analytical trends in MS-based metabolomics approaches to neurochemicals in multiple biological samples, such as urine, blood, CSF, and biological tissues, are discussed. This paper is expected to contribute to the development of an analytical platform to discover biomarkers that will aid diagnosis, prognosis, and treatment of neurodegenerative disorders.

The Relation of Intelligence, Self-esteem, Mathematical Attitudes, and Scientific Attitudes of Gifted Students from Low-income Families (소외계층 영재의 지능과 자아존중감, 수학적 태도 및 과학적 태도의 관계)

  • Song, Kyung Ae
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.6
    • /
    • pp.1039-1051
    • /
    • 2014
  • This study aims to measure intelligence (cognitive characteristics), self-esteem, mathematical attitudes, and scientific attitudes (affective characteristics) of gifted students from low-income families, and to identify the relationship among these variables. 147 students in the lower grades of elementary schools who were enrolled to university-based gifted education centers were participants of the study. The results showed that the percentile scores of each variable were 85% for intelligence, 75.6% for self-esteem, 73.3% for mathematical attitudes, and 71.3% for mathematical attitudes. There was no statistically significant relationship between intelligence and the affective characteristics (i.e., self-esteem, mathematical attitudes, and scientific attitudes), while statistically significant relationships were shown between self-esteem and mathematical attitudes (r=.448, p=.000), between self-esteem and scientific attitudes (r=.522, p=.000), and between mathematical attitudes and scientific attitudes (r=.448, p=.000). The results suggest that although the gifted students from low-income families show lower levels compared to other gifted student groups, their potential level of giftedness is considerably high, which calls for appropriate educational support systems designed for this population.

Effect of Highly Concentrated Oxygen Administration on Addition Task Performance and Physiological Signals (고농도 산소가 덧셈과제 수행능력과 생리신호에 미치는 영향)

  • Chung, Soon-Cheol;Lim, Dae-Woon
    • Science of Emotion and Sensibility
    • /
    • v.11 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • This study investigated the effect of 40% oxygen administration on the addition task performance in three levels of difficulties and physiological signals. Ten male and female college students were selected as the subjects for this study. The experiment consisted of two runs: one was a addition task, with normal air (21% oxygen) administered and the other was with hyperoxic air (40% oxygen) administered. The experimental sequence in each run consisted of Rest1 (3 min), Task1 (1 min, one digit addition task), Task2 (1 min, two digit addition task), Task3 (1 min, three digit addition task), and Rest2 (4 min). Blood oxygen saturation and heart rate were measured throughout the five phases. The accuracy rates of the addition task were enhanced with 40% oxygen administration compared to 21% oxygen. Difference in the accuracy rates grew higher with the rise of difficulty. When 40% concentration oxygen is supplied, blood oxygen saturation increased and heart rate was decreased comparing to 21%. This study showed that the supply of high concentration oxygen increases blood oxygen saturation, which in turns accelerates brain activation resulting from cognitive process and enhances arithmetic abilities. Particularly when difficulty is high, demand for oxygen increases and, as a result, the effect of high concentration oxygen becomes more significant.

  • PDF

The analysis of characteristics and effects of contextual variables in terms of student achievement levels and gender based on the results of PISA 2015 science domain (PISA 2015 과학 영역에 나타난 학생 성취수준 집단 및 성별에 따른 교육맥락 변인의 특성 및 영향력 분석)

  • Ku, Jaok;Koo, Namwook
    • Journal of Science Education
    • /
    • v.42 no.2
    • /
    • pp.165-181
    • /
    • 2018
  • This study compares and analyzes the characteristics and effects of various educational contextual variables according to students' achievement level and gender groups based on the results of PISA 2015 science domain. PISA 2015 included additional variables about teaching-learning and affective characteristics in the field of science, because science was the main domain of PISA 2015. The results of the mediation analysis using a multiple group structural equation model showed that the environment and strategy for the teaching and learning had a positive effect on the affective characteristics, and also positively affected science achievement through the mediator of the affective characteristics. Particularly, the environment and strategy for the teaching and learning was the most effective in improving the affective characteristics for the low achievement group. It was found that the difference of the mediated effect between achievement level groups was statistically significant, but that between male and female students was not. Therefore, the appropriate the environment and strategy for the teaching and learning will need to be emphasized consistently to improve students' cognitive and affective achievement. The implications and suggestions of these results were discussed.

Amyloid-β Levels in Mice Hippocampus According to the ALDH2 Enzyme Activity followed Ethanol Exposure for 8-Weeks (ALDH2 효소 활성과 8주간 에탄올 노출에 따른 해마조직의 아밀로이드 베타 발현)

  • Moon, Sun-In;Eom, Sang-Yong;Yim, Dong-Hyuk;Song, Sun-Ho;Kim, Yong-Dae;Kim, Heon
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1636-1640
    • /
    • 2011
  • Alzheimer's disease (AD) is a progressive neurodegenerative disease, resulting in the loss of cognitive function. Mitochondrial aldehyde dehydrogenase (ALDH2) has been proposed to be a risk factor for the development of AD, but there is still controversy about that. In this study, we demonstrated the role of ALDH2 enzyme activity on amyloid-beta (A${\beta}$) and nuclear factor kappa B (NF-${\kappa}B$) expression in mice brain following ethanol exposure for 8 weeks. Five male Aldh2 (+/+) and Aldh2 (-/-) mice, 8 weeks-old of age (C57BL/6J strain), in each group were exposed to ethanol for 8 weeks (2 g/kg wt./day) using gavage. Those in the control groups received 0.9% saline alone. Results showed a difference in expression level of A${\beta}$ in the hippocampus after ethanol exposure according to the ALDH2 enzyme activity (p<0.05), but not in the level of NF-${\kappa}B$). Our results suggest a possibility that ALDH2 enzyme activity may be an important role in the development of AD.

Analysis of Interpretation Processes Through Readers' Thinking Aloud in Science-Related Line Graphs (과학관련 선 그래프를 해석하는 고등학생들의 발성사고 과정 분석)

  • Kim, Tae-Sun;Kim, Beom-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.2
    • /
    • pp.122-132
    • /
    • 2005
  • Graphing abilities are critical to understand and convey information in science. And then, to what extent are secondary students in science courses able to understand line graphs? To find clues about the students' interpretation processes of the information in science-related line graphs, this study has the following research question: Is there a difference between the levels of complexity of good and poor readers as they use the thinking aloud method for studying cognitive processes? The present study was designed to provide evidence for the hypothesis that good line graph readers use a specific graph interpretation process when reading and interpreting line graphs. With the aid of the thinking aloud method we gained deeper insight into the interpretation processes of good and poor graph readers while verifying verbal statements with respect to line graphs. The high performing students tend to read much more information and more trend-related information than the low performing students. We support the assumption of differential line graph schema existing in the high performing students in conjunction with general graph schema. Also, high performing students tend to think aloud much more metacognitively than low performing students. High performing students think aloud a larger quantity of information from line graphs than low performing students, and more trend-related sentences than value-related sentences from line graphs. The differences of interpretation processes revealed between good and poor graph readers while reading and interpreting line graphs have implications for instructional practice as well as for test development and validation. Teaching students to read and interpret graphs flexibly and skillfully is a particular challenge to anyone seriously concerned with good education for students who live in an technological society.