Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.11.1636

Amyloid-β Levels in Mice Hippocampus According to the ALDH2 Enzyme Activity followed Ethanol Exposure for 8-Weeks  

Moon, Sun-In (Department of Preventive Medicine, College of Medicine and Medical Research Institute, Chungbuk National University)
Eom, Sang-Yong (Department of Preventive Medicine, College of Medicine and Medical Research Institute, Chungbuk National University)
Yim, Dong-Hyuk (Department of Preventive Medicine, College of Medicine and Medical Research Institute, Chungbuk National University)
Song, Sun-Ho (Department of Preventive Medicine, College of Medicine and Medical Research Institute, Chungbuk National University)
Kim, Yong-Dae (Department of Preventive Medicine, College of Medicine and Medical Research Institute, Chungbuk National University)
Kim, Heon (Department of Preventive Medicine, College of Medicine and Medical Research Institute, Chungbuk National University)
Publication Information
Journal of Life Science / v.21, no.11, 2011 , pp. 1636-1640 More about this Journal
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, resulting in the loss of cognitive function. Mitochondrial aldehyde dehydrogenase (ALDH2) has been proposed to be a risk factor for the development of AD, but there is still controversy about that. In this study, we demonstrated the role of ALDH2 enzyme activity on amyloid-beta (A${\beta}$) and nuclear factor kappa B (NF-${\kappa}B$) expression in mice brain following ethanol exposure for 8 weeks. Five male Aldh2 (+/+) and Aldh2 (-/-) mice, 8 weeks-old of age (C57BL/6J strain), in each group were exposed to ethanol for 8 weeks (2 g/kg wt./day) using gavage. Those in the control groups received 0.9% saline alone. Results showed a difference in expression level of A${\beta}$ in the hippocampus after ethanol exposure according to the ALDH2 enzyme activity (p<0.05), but not in the level of NF-${\kappa}B$). Our results suggest a possibility that ALDH2 enzyme activity may be an important role in the development of AD.
Keywords
Aldehyde dehydrogenase 2; Alzheimer disease; hippocampus; amyloid-beta; nuclear factor kB;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, Y. W., S. H. Choi, Y. S. Kim, S. I. Moon, S. Y. Eom, Y. D. Kim, and H. Kim. 2008. Effect of ALDH2 enzyme activity on the level of 8-hydroxydeoxyguanosine in tissues following ethanol exposure. J. Life Sci. 18, 1173-1176.   DOI
2 Zhou, S., Huriletemuer, J. Wang, C. Zhang, S. Zhao, D. S. Wang, B. Wang, and X. Ma. 2010. Absent of association on aldehyde dehydrogenase 2 (ALDH2) polymorphism with mongolian Alzheimer patients. Neurosci. Lett. 468, 312-315.   DOI   ScienceOn
3 Kaur, J. and M. P. Bansal. 2008. Effect of vitamin E on alcohol- induced changes in oxidative stress and expression of transcription factors NFkappaB and AP-1 in mice brain cerebral hemispheres. Indian J. Exp. Biol. 46, 562-567.
4 Kitagawa, K., T. Kawamoto, N. Kunugita, T. Tsukiyama, K. Okamoto, and A. Yoshida. 2000. Aldehyde dehydrogenase (ALDH) 2 associates with oxidation of methoxyacetaldehyde; in vitro analysis with liver subcellular fraction derived from human and Aldh2 gene targeting mouse. FEBS Lett. 476, 306-311.   DOI   ScienceOn
5 Meffert, M. K. and B. David. 2005. Physiological functions for brain NF-kB. Trends in Neurosciences 28, 37-43.   DOI   ScienceOn
6 Moon, S. I., S. Y. Eom, J. H. Kim, D. H. Yim, H. K. Kim, Y. D. Kim, and H. Kim. 2011. Thiobarbituric acid reactive substances levels in brain tissue of aldh2 knockout mice following ethanol exposure for 8 weeks. J. Life Sci. 21, 1163-1167.   DOI
7 Nordmann, R., C. Ribiere, and H. Rouach. 1992. Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic. Biol. Med. 12, 219-240.   DOI   ScienceOn
8 Ohta, S., I. Ohsawa, K. Kamino, F. Ando, and H. Shimokata. 2004. Mitochondrial ALDH2 deficiency as an oxidative stress. Ann. N. Y. Acad. Sci. 1011, 36-44.   DOI   ScienceOn
9 Reinke, L. A., Y. Kotake, P. B. McCay, and E. G. Janzen. 1991. Spin-trapping studies of hepatic free radicals formed following the acute administration of ethanol to rats: in vivo detection of 1-hydroxyethyl radicals with PBN. Free Radic. Biol. Med. 11, 31-39.   DOI   ScienceOn
10 Reiter, R. J. 1998. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56, 359-384.   DOI   ScienceOn
11 Shin, I. S., R. Stewart, T. M. Kim, S. W. Kim, S. T. Yang, H. Y. Shin, J. S. Jung, and J. S. Yoon. 2005. Mitochondrial aldehyde dehydrogenase polymorphism is not associated with incidence of Alzheimer's disease. Int. J. Geriatr. Psychiatry 20, 1075-1080.   DOI   ScienceOn
12 Altura, B.M. and A. Gebrewold. 1998. Pyrrolidine dithiocarbamate attenuates alcohol-induced leukocyte-endothelial cell interaction and cerebral vascular damage in rats: possible role of activation of transcription factor NF-kappaB in alcohol brain pathology. Alcohol 16, 25-28.   DOI   ScienceOn
13 Bondy, S. C. 1992. Ethanol toxicity and oxidative stress. Toxicol. Lett. 63, 231-241.   DOI   ScienceOn
14 Bondy, S. C. and J. Orozco. 1994. Effects of ethanol treatment upon sources of reactive oxygen species in brain and liver. Alcohol Alcohol. 29, 375-383.
15 Goedde, H. W., D. P. Agarwal, G. Fritze, D. Meier-Tackmann, S. Singh, and G. Beckmann. 1992. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum. Genet. 88, 344-346.
16 Camandola, S., P. Giuseppe, and M. P. Mattson. 2000. The lipid peroxidation product 4-hydroxy-2,3-nonenal inhibits constitutive and inducible activity of nuclear factor kB in neurons. Mol. Brain Res. 85, 53-60.   DOI
17 Fadda, F. and Z. L. Rossetti. 1998. Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog. Neurobiol. 56, 385-431.   DOI   ScienceOn
18 Goedde, H. W., D. P. Agarwal, S. Harada, D. Meier-Tackmann, D. Ruofu, and U. Bienzle. 1983. Population Genetic studies on aldehyde dehydrogenase isozyme deficiency and alcohol sensitivity. Am. J. Hum. Genet. 35, 769-772.
19 Ishii, H., I. Kurose, and S. Kato. 1997. Pathogenesis of alcoholic liver disease with particular emphasis on oxidative stress. J. Gastroenterol. Hepatol. 12, 272S-282S.   DOI
20 Isse, T., T. Oyama, T. Kitagawa, K. Matsuno, A. Matsumoto, and A. Yoshida. 2002. Diminished alcohol preference in transgenic mice lacking aldehyde dehydrogenase activity. Pharmacogenetics 12, 621-626.   DOI   ScienceOn
21 Jaatinen, P. and J. Rintala. 2008. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. Cerebellum 7, 332-347.   DOI   ScienceOn
22 Yokoyama, A., T. Muramatsu, T. Omori, T. Yokoyama, S. Matsushita, S. Higuchi, K. Maruyama, and H. Ishii. 2001. Alcohol and aldehyde dehydrogenase gene polymorphisms and oropharyngolaryngeal, esophageal and stomach cancers in Japanese alcoholics. Carcinogenesis 22, 433-439.   DOI
23 Agarwal, D. P. and H. W. Goedde. 1992. Pharmacogenetics of alcohol metabolism and alcoholism. Pharmacogenetics 2, 48-62.   DOI   ScienceOn
24 Wang, D. L., Z. Q. Ling, F. Y. Cao F. Y., L. Q. Zhu, and J. Z. Wang. 2004. Melatonin attenuates isoproterenolinduced protein kinase A overactivation and tau hyperphosphorylation in rat brain. J. Pineal. Res. 37, 11-16.   DOI   ScienceOn
25 Yokoyama, A., H. Watanabe, H. Fukuda, T. Haneda, H. Kato, and T. Yokoyama. 2002. Multiple cancers associated with esophageal and oropharyngolaryngeal squamous cell carcinoma and the aldehyde dehydrogenase-2 genotype in male Japanese drinkers. Cancer Epidemiol. Biomarkers. Prev. 11, 895-900.
26 Yokoyama, A., T. Muramatsu, T. Ohmori, T. Yokoyama, K. Okuyama, H. Takahashi, Y. Hasegawa, S. Higuchi, K. Maruyama, K. Shirakura, and H. Ishii. 1998. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 19, 1383-1387.   DOI