• Title/Summary/Keyword: Cogging force

Search Result 94, Processing Time 0.023 seconds

Pick & Place Module consist of Linear Motor using Cogging Force Reduction Method (코깅힘 저감 방법을 적용한 선형모터로 구성되는 Pick & Place 모듈)

  • Chung, Myung-Jin
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.735-742
    • /
    • 2020
  • The pick & place module is used as a core module in the process equipment for producing and inspecting semiconductor components. The conventional pick & place module has the disadvantage that the precision and durability of the system are reduced and the size and weight of the module are increased by using a conversion device that converts rotary motion into linear motion. In this study, we proposed a pick & place module that implements up-and-down linear motion without a conversion device by improving such disadvantage and employs a linear motor with no limit on average thrust and travel distance. Design parameter values, that can reduce cogging force while maintaining average thrust by selecting parameters for designing a core type linear motor with a large thrust to volume ratio and analyzing the effect of cogging force according to design parameter changes through magnetic analysis, was selected. Average thrust and cogging force were measured for the pick & place module composed of the manufactured linear motor and compared with the design values.

A Design of Optimal Interval between Armatures in Long Distance Transportation PMLSM for End Cogging Force Reduction

  • Park, Eui-Jong;Jung, Sang-Yong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.361-366
    • /
    • 2016
  • Although the permanent magnet linear synchronous motor is a motor useful for transportation systems thanks to its high speed, high acceleration and deceleration, the linear motor generally has armatures installed on the full length of the transport path. It results in the increase in material costs and manufacturing time. As a means to solve this problem a stationary discontinuous armature system is suggested. However, it involves the following two issues. The first issue is it is impossible to control the mover in the section where any armature is not installed as armatures are distributed. The second one is increasing cogging force due to the ends of the armatures. Therefore, this study aims to solve these problems by adjusting intervals between armatures to control the mover anywhere, and to design the interval between armatures optimally to minimize the end cogging force. The suitable distance was deduced. It addressed the problems and showed suitability for long distance transportation PMLSM.

Design of Auxiliary Teeth on the Edge of Stationary Discontinuous Armature PM-LSM with Concentrated Winding

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.352-356
    • /
    • 2013
  • Recently, the stationary discontinuous armature, Permanent Magnet Linear Synchronous Motor (PM-LSM), was suggested as a driving source for long-distance transportation system. However, as these motors arrange armatures discontinuously, an edge occurs thereby leading to a cogging force. This works as a factor that hinders the acceleration and deceleration that takes place when movers enter into and eject from armatures. Therefore, in this study, the installation of auxiliary teeth on the edge of the armature of PM-LSM is suggested in order to reduce the cogging force caused by the edge when the armature is placed in a discontinuous arrangement. Auxiliary teeth are optimally designed by a 2-D numerical analysis using the finite element method was performed to generate the optimum design of the auxiliary teeth. The validity of the study was confirmed through the comparison of the cogging force induced at the edge in respect to the design parameter using the basic model.

Analysis of the Eccentric Characteristics of the Brushless Motor by the Rotor Structure (회전자 구조에 따른 브러시리스 모터 편심 특성 분석)

  • Son, Byoung-Ook;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.156-163
    • /
    • 2010
  • The brushless motor is getting widely applied to the automotive component with the advantage of the high efficiency, high reliability and etc.. Most of the motor applications require the low vibration and acoustic noise. The cogging torque is the one of the main cause of the noise and vibration. The step-skewed rotor is used to reduce the cogging torque. We analyze the characteristics of the step-skewed rotor and non skewed rotor with the same stator by using 2-dimensional FEM. And then we analyze the characteristics variation according to the rotor eccentricity. The prototype is made and tested. As the results, the step-skewed rotor structure reduce the cogging torque and local radial force but it is more sensitive to rotor eccentricity.

Influence of Harmonic Modulator Shape on the Cogging Force of Magnetic Gear (고조파 조절기 형상이 자석 기어의 코깅 자기력에 미치는 영향 분석)

  • Kwangsuk, Jung
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • The reduction ratio of the magnetic gear is determined by the ratio of the number of poles between the high-speed permanent magnet layer and the low-speed permanent magnet layer. In general, it is known that the greater the least common multiple of both poles, the smaller the torque ripple called by cogging of the magnetic force generated in the magnetic gear. However, little is known about the effect of the harmonic modulator that filters the magnetic field in the magnetic gear to magnetically couple the high-speed side and the low-speed side except for the number of poles. In this study, torque ripple characteristics according to changes in modulator shape such as opening ratio and tooth thickness are analyzed using a finite element analysis tool.

Effect of Slot Opening on the Cogging Torque of Fractional-Slot Concentrated Winding Permanent Magnet Brushless DC Motor

  • Yan, Jianhu;Zhang, Qiongfang;Feng, Yi
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.78-82
    • /
    • 2016
  • Cogging torque will affect the performance of a permanent magnet Brushless DC Motor (BLDCM), thus the reduction of cogging torque is key for BLDCM optimization. In this paper, the phase shifting of cogging torque for a fractional-slot concentrated winding BLDCM is analyzed using the Maxwell tensor method. Moreover, a 9-slot 10-pole concentrated winding BLDCM driven by ideal square waveform is studied with the finite element method (FEM). An effective method to reduce the cogging torque is obtained by adjusting the slot opening. In addition, the influences of different slot openings on back electromotive force (back-EMF), air gap flux density and flux linkage are investigated and experimentally validated using the prototype BLDCM.

Effect of Pole to Slot Ratio on Cogging Torque and EMF Waveform in Permanent Magnet Motor with Fractional-Slot (분수슬롯을 가진 영구자석 전동기에서 극당 슬롯 비율이 코깅토크와 역기전력에 미치는 영향)

  • Lee, Kab-Jae;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.454-459
    • /
    • 2003
  • Conventional integral-slot design in permanent magnet(PM) motor tends to have a high cogging torque and large end turns, which contribute to copper losses. The fractional-slot design is effective compared to integral-slot design in the cogging torque and electromotive force(EMF) waveform. The effectiveness of fractional slot can be maximized by selecting optimal pole to slot ratio. This paper presents the effect of pole to slot ratio on the cogging torque and EMF waveform in the PM motor with fractional-slot. The effectiveness of the proposed designs has been confirmed by comparing waveform of EMF. cogging torque and torque ripple between conventional and new models.

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

Cogging Force Reduction of Two Phase Linear Hybrid Stepping Motor (2상 선형 하이브리드 스테핑 전동기의 코깅 리플 저감)

  • Hwarg, Tai-Sik;Seok, Jul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.96-98
    • /
    • 2005
  • This paper presents a new two-phase linear hybrid stepping motors (LHSM), which has two windings per phase and one of them shares the other phase winding. The proposed motor shows a unique ability to deliver low cogging force without any particular complex control scheme and additional power electronics hardware in micro stepping control. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed design.

  • PDF

Effect of the Number of Slots on the Acoustic Noise from BLDC Motors (BLDC 전동기의 슬롯수가 소음에 미치는 영향)

  • Kwon, Joong-Hak;Kim, Kwang-Suk;Lee, Chang-Min;Hwang, Sang-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.759-763
    • /
    • 2009
  • The goal of this study is to examine the effect of the number of slots on the noise from BLDC motors. To this end, the number of poles was fixed to 4 and the number of the slots was set to 6 or 24 before noise was measured. Motors having different numbers of slots showed clear differences in noise. Cogging torque, torque ripple and normal local force were interpreted, analyzed and compared to determine the reason for the differences. To determine the cause of the noise, cogging torque, torque ripple and normal local force were calculated, which are representative noise sources of BLDC motors, and FFT was performed to analyze their frequency components(harmonics). The results show that torque ripple and normal local force were the dominant factors in the noise difference between the 6-slot and 24-pole motors. As the number of the slots increased, the number of harmonics decreased and their amplitude of harmonic were reduced, which was attributed as the reason for the noise differences.