• 제목/요약/키워드: Coextrusion

검색결과 15건 처리시간 0.022초

Hybrid Coextrusion and Lamination Process for Macrochanneled Bioceramic Scaffolds

  • Koh, Young-Hag;Bae, Chang-Jun;Kim, Hyoun-Ee
    • 한국세라믹학회지
    • /
    • 제41권7호
    • /
    • pp.497-502
    • /
    • 2004
  • A hybrid coextrusion and lamination process has been developed to fabricate macrochanneled bioceramic scaffolds. This process was mainly composed of three steps (i.e., coextrusion of thermoplastic compound, lamination, and thermal treatment), forming unique pore channels in dense bioceramic body. Pore channels were formed by removing carbon black material, while calcium phosphate or Tetragonal Zirconia Polycrystals (TZP) with a calcium phosphate coating layer were used as dense body. Two kinds of pore structures were fabricated; that is, the pore channels were formed in uni- or three-directional array. Such macrochanneled bioceramic scaffolds exhibited the precisely controlled pore structure (pore size, porosity, and interconnection), offering excellent mechanical properties and cellular responses.

Numerical simulation of coextrusion process of viscoelastic fluids using the open boundary condition method

  • Park, Seung-Joon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제13권1호
    • /
    • pp.37-45
    • /
    • 2001
  • Numerical simulation of coextrusion process of viscoelastic fluids within a die has been carried out. In the coextrusion process velocity profile at the outflow boundary is not known a priori, which makes it difficult to impose the proper boundary condition at the outflow boundary. This difficulty has been avoided by using the open boundary condition (OBC) method. In this study, elastic viscous stress splitting (EVSS) formulation with streamline upwind (SU) method has been used in the finite element method. In order to test the validity of the OBC method, comparison between the results of fully developed condition at the outlet and those of OBC has been made for a Newtonian fluid. In the case of upper convected Maxwell (UCM) fluid, the effect of outflow boundary condition on the interface position has been investigated by using two meshes having different downstream lengths. In both cases, the results with the OBC method showed reasonable interface shape. In particular, for the UCM fluid the interface shape calculated with OBC was independent of the downstream length, while the results with the zero traction condition showed oscillation of interface position close to the outlet. Viscosity difference was found to be more important than elasticity difference in determining the final interface position. However, the overshoot of interface position near the con-fluent point increased with elasticity.

  • PDF

Three-dimensional numerical simulation of nonisothermal coextrusion process with generalized Newtonian fluids

  • Sunwoo, Ki-Byung;Park, Seung-Joon;Lee, Seong-Jae;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제12권3_4호
    • /
    • pp.165-173
    • /
    • 2000
  • Three-dimensional numerical simulation of isothermal/nonisothermal coextrusion process of two immiscible polymers through a rectangular channel has been done using the finite element method. The encapsulation phenomenon with the less viscous layer encapsulating the more viscous layer was investigated with the generalized Newtonian fluids. The interface position around the symmetric plane obtained by numerical simulation nearly coincided with the one observed in experiments, but the degree of encapsulation was less than the one observed experimentally. Open boundary condition method was found to be applied to the simulation of nonisothermal coextrusion process, however, the results are not far from those using the fully developed boundary condition, because the temperature development along the downstream direction is very slow in the case of convection dominated flow. When the inlet velocity is increased, the interface profile does not change in isothermal flow, while it moves upward in nonisothermal situation. The degree of encapsulation decreases along the downstream direction in nonisothermal flow. When the inlet temperature increases compared to the wall temperature, the outlet interface moves downward and the degree of encapsulation increases. The difference of degree of encapsulation between the simulation and the experiments seems to arise from the viscoelastic effect of the materials. It was concluded that the nonisothermal effect alone does not explain the complex coextrusion process and the viscoelastic effect needs to be considered.

  • PDF

고분자의 Coextrusion에서 유동에 대한 비등온 효과 (Non-isothermal Effect on the Flow Behavior of Polymer Melts in a Coextrusion Die)

  • 정인재
    • 유변학
    • /
    • 제6권2호
    • /
    • pp.129-138
    • /
    • 1994
  • 공압출되는 sheet die에서 고분자 물질의 비등온 유동유동을 수치모사하였다. 유변학 적 식으로 power-law model을 사용하였고, 격자생성법을 이용한 유한차분법을 사용하였다. 수치계산을 통해 수축채널에서의 온도 분포를 구해보고 점도가 채널에서의 온도 분포를 구 해 보고 점도가 채널에서의 압력강하 및 신장속도에 미치는 영향을 알아보았다. 압력강하는 외부 유체의 점도 및 heat dissipation의 영향을 크게 받았다. 신장속도는 외부 유체의 점도 가 증가함에 따라 커진 반면 내부 유체의 점도가 증가함에 따라 커진반면, 내부 유체의 점 도증가에 따라 감소하였고, heat dissipation에 의해 증가하였다.

  • PDF

Coextrusion Die에서 수축흐름의 수치모사 (numerical Simulation of Converging Flow in a Coextrusion Die)

  • R.K.
    • 유변학
    • /
    • 제6권2호
    • /
    • pp.119-128
    • /
    • 1994
  • 공압출되는 sheet die에서 뉴튼 유체의 수축흐름을 격자생성법을 이용한 유한차분법 을 사용하여 수치모사하였다. 계면조건의 처리방법을 개발하였고 점도 및 채널 모양이 압력 강하 및 신장속도에 미치는 영향을 알아보았다. 압력강하는 점도비의 영향을 크게 받았으며 신장속도는 점도비 및 채널 모양의 영향을 크게 받았다. 여러 가지채널모양에서 신장속도를 비교해 본 결과, 트럼펫 모양의 수축채널이 신장속도가 가장속도가 가장 작게 나타났다.

  • PDF

동시 압출법에 의한 핀형 튜브 Cladding 공정의 Plasticine 압출 모사 (Simulation of Coextrusion Process of Cladded Finned Tube by Plasticine)

  • 이현우;박진성;김우식;신동혁;김용석
    • 소성∙가공
    • /
    • 제7권1호
    • /
    • pp.59-65
    • /
    • 1998
  • In this study an attempt was made to simulate the coextrusion process of the cladded finned tube manufacturing by extrusion of plasticine. The effects of the billet and the plate inserted between the ingot and extrusion die on the variation of clad thickness of the extruded tube were studied. The results showed that cladded tube with uniform thickness can be obtained by a proper combination of clad thickness of billet and the plate. The relative strength of the billet and clad materials did not affect significantly on the variation of the clad thickness of the extruded tubes.

  • PDF