• Title/Summary/Keyword: Coercivity($H_C$)

Search Result 176, Processing Time 0.03 seconds

Barium Hexaferrite Thin Films Prepared by the Sol-Gel Method

  • An, Sung-Yong;Lee, Sang-Won;Shim, In-Bo;Yun, Sung-Roe;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Nano-crystalline hexaferrite $BaFe_{12}O_{19}$(BaM) thin films have been prepared by the sol-gel method. A solution of Ba-nitrate and Fe-nitrates was dissolved in solvent with the stoichiometric ratio Ba/Fe=1/10. Films were spin-coated onto $SiO_2$Si substrates, dried and then heated in air at various temperatures. In films prepared at a drying temperature $T_d=250^{\circ}C$ and a crystallizing temperature 650${\circ}C$, single-phase BaM was obtained. High coercivities were obtained in these nano-crystalline thin films, 4~5.5 kOe for hexaferrite. Polycrystalline BaM/$SiO_2$/Si(100) thin films were characterized by Rutherford backscattering (RBS), thermogravimetry (TGA), differential thermal analysis (DTA), x-ray diffraction (XRD), and vibrating sample magnetometry (VSM), as well as Fourier transform infrared spectroscopy (FTIR). The perpendicular coercivity $H_{C\bot}$ and in-plane coercivity $H_{CII}$ after annealing at 650${\circ}C$ for 2 hours were 4766 Oe and 4480 Oe, respectively, at room temperature, under a maximum applied field of 10 kOe.

  • PDF

Magnetization and Intrinsic Coercivity for τ-phase Mn54Al46/α-phase Fe65Co35 Composite

  • Park, Jihoon;Hong, Yang-Ki;Lee, Jaejin;Lee, Woncheol;Choi, Chul-Jin;Xu, Xia;Lane, Alan M.
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.55-58
    • /
    • 2014
  • We have synthesized ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}/{\alpha}$-phase $Fe_{65}Co_{35}$ composite by annealing a mixture of paramagnetic ${\varepsilon}$-phase $Mn_{54}Al_{46}$ and ferromagnetic ${\alpha}$-phase $Fe_{65}Co_{35}$ particles at $650^{\circ}C$. The volume fraction ($f_h$) of hard ${\tau}$-phase $Mn_{54}Al_{46}$ of the composite was varied from 0 to 1. During the annealing, magnetic phase transformation occurred from paramagnetic ${\varepsilon}$-phase to ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}$. The magnetization and coercivity of the composite monotonically decreased and increased, respectively, as the $f_h$ increased. These results are in good agreement with our proposed composition dependent coercivity and modified magnetization equations.

Study on the Magnetic Characteristics of Anisotropic SmCo7-type Alloys Synthesized by High-energy Surfactant-assisted Ball Milling

  • Yu, N.J.;Zhang, P.Y.;Shi, Y.J.;Pan, M.X.;Zhang, S.Y.;Ge, H.L.;Lu, Y.C.
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.340-344
    • /
    • 2014
  • An effective process was employed for synthesizing anisotropic magnetic $SmCo_7$-type alloy flakes with high coercivity, which is highly desirable for many applications. The highest coercivity of 16.3 kOe corresponds to a typical flake thickness of 200 nm for the 3-h ball-milled sample. The anisotropy field was calculated by measuring the parallel and perpendicular directions to the easy magnetization direction of the powders. The anisotropy field decreased with the increase of the ball milling time, thus indicating that the decrease of coercivity was mainly caused by the reduction of the anisotropy field. Microstructure analysis indicated that the morphology, grain size, and anisotropy field of these samples have a great influence on the magnetic properties.

Temperature Dependence of Exchange Coupling on Magnetic funnel Junctions

  • Hu, Yong-Kang;Kim, Cheol-Gi;Stobiecki, Tomasz;Kim, Chong-Oh;Hong, Ki-Min
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.32-35
    • /
    • 2003
  • Magnetic funnel Junctions (MTJs) were fabricated on thermally oxidized Si (100) wafers using DC magnetron sputtering. The film Structures were Ta(50 ${\AA}$)/CU(100 ${\AA}$)$Ni_{80}Fe_{20}(20 $ ${\AA}$)/Cu(50 ${\AA}$)/$Mn_{75}Ir_{25}(100 $ ${\AA}$)/$Co_{70}Fe_{30}(25$ ${\AA}$)/Al-O(15 ${\AA}$)/$Co_{70}Fe_{30}(25 $ ${\AA}$)/$Ni_{80}Fe_{20}(t)/Ta(50 $ ${\AA}$), with t=0 ${\AA}$, 100 and 1000 ${\AA}$, respectively. X-ray diffraction has shown improvement of (111) texture of IrMn$_3$ and Cu by annealing. The exchange-biased energy is almost inversely proportional to temperature. The difference between the coercivity H$_c$ and the exchange biased field H$_E$ for t = 0 $_3$ sample is smaller than that for t = 1000 ${\AA}$. For the pinned layer, the decreasing rate of the coercivity with the temperature is higher compared to that of the exchange field, but variation of H$_c$ is similar to that of the exchange field for free layer.

EFFECT OF Al UNDERLAYER ON THE MICROSTRUCTURES OF CoCrTa/Cr FILMS

  • Chang, H.S.;Shin, K.H.;Lee, T.D.;Park, J.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.614-617
    • /
    • 1995
  • Thin CoCrTa/Cr films were deposited on glass substrates at $280^{\circ}C$ with or without Al underlayer. The coercivity of CoCrTa increased considerably by introducing an Al underlayer. The grain size of Cr thin film deposited on Al underlayer became smaller than that of Cr thin film deposited on glass substrate. The grain size of CoCrTa thin film was determined by Cr grain size. The cause of the coercivity increase seems to be associated with the refinement and uniform distribution of CoCrTa grains.

  • PDF

Physical Properties of Polycrystalline Zinc-Substituted Lithium Ferrite (ZnO가 Lithium ferrite의 물리적 특성에 미치는 영향에 관한 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.234-238
    • /
    • 1999
  • Lithium ferrites are prominent in the element of microwave frequency communication core and high frequency memory core because of their low coercivity and the high squareness ratio. This paper reports primarily the development of lithium ferrites with the low coercivity and high squareness ratio. The materials with $Li_{0.48-0.5x}Bi_{0.02}Ni_{0.04}Zn_xFe_{2.46-0.5x}O_4$ (x = 0,0.01, 0.02, 0.03) have been prepared to investigate the physical properties. The addition of ZnO gave raised maximum induction $(B_m)$ and decreased coercive force $(H_c)$, but the squareness ratio $(R\;=\;B_m/B_r)$ was decreased. The specimen of squareness ratio R=0.82, coercive force $H_c=\;1.80\;Oe$ was obtained for $Li_{0.48-0.5x}Bi_{0.02}Ni_{0.04}Zn_xFe_{2.46-0.5x}O_4$ (X=0) sintered at 105$0^{\circ}C$. Also the sample of squareness ratio R = 0.75, coercive force $H_c=\;1.70\;Oe$ for $Li_{0.48-0.5x}Bi_{0.02}Ni_{0.04}Zn_xFe_{2.46-0.5x}O_4$ (X = 0) sintered at 110$0^{\circ}C$ was measured. The Tc was obtained 463$^{\circ}C$ and the Br of environmental temperature variation was stable.

  • PDF

The Influence of Thermal Annealing on Magnetostatic Properties of thin Ni Films

  • Shalyguina, E.E.;Kim, Chong-Oh;Kim, Cheol-Gi;Seo, Jung-Hwa
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.133-137
    • /
    • 2003
  • The magnetostatic properties of the as-deposited and annealed at T=300 and 400$^{\circ}C$ Ni films were investigated employing both magneto-optical magnetometer and VSM. The Ni films of 50∼200 nm thicknesses were prepared by DC magnetron sputtering technique. The strong influence of annealing temperature on magnetostatic properties of the studied samples was discovered. For the annealed Ni films, the increase of the coercivity H$_c$ (up to 4 times) in comparison with that of as-deposited samples was revealed. The obtained results were explained by using crystallographic structural data of the samples.