• Title/Summary/Keyword: Coefficient of thermal expansion

Search Result 882, Processing Time 0.025 seconds

Characteristics of Nickel Aluminate Ceramics Synthesized by Organic (PVA)-Inorganic Solution Technique (PVA 폴리머를 이용한 니켈 알루미네이트 분말의 합성 및 특성연구)

  • 이상진;김주원
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.690-695
    • /
    • 2003
  • Soft-solution route employing PVA(Polyvinyl Alcohol) as a polymeric carrier in a mixed metal cation solution was used for synthesis of single-phase nickel aluminate (NiA1$_2$O$_4$) powders. The PVA ensured the homogeneous distribution of metal ions in the solution and it resulted in the decrease of crystallization temperature. The synthesized powders prepared by PVA addition were soft and ball-milled easily. The ball-milled powders of about 300 nm in size were fully densified to density of 4.35 g/㎤ at 1600$^{\circ}C$ for 1 h. The Vickers hardness, flexural strength, fracture toughness and thermal expansion coefficient of the sintered nickel aluminate were 14.2 ㎬, 304 ㎫, 4.8 ㎫$.$m$\^$1/2/ and 9.8${\times}$10$\^$-6//$^{\circ}C$, respectively.

Characteristics of Shear Strength for joined SiC-SiC Ceramics (SiC세라믹스 동종재 접합재의 전단강도 특성 평가)

  • Yoon, Han Ki;Jung, Hun Chea;Hinoki, T.;Kohyama, A.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 2014
  • In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The shear strength and microstructure of joined material between SiC substrates are investigated. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine ${\beta}$-SiC nano-powder which the average particle size is below 30 nm, $Al_2O_3$, $Y_2O_3$, and $SiO_2$ were used as joining adhesives. The specimens were joined with 20MPa and $1400-1900^{\circ}C$ by hot pressing in argon atmosphere. The shear test was performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM).

Effect of Filled Hole on Strength Behavior of CFRP Composites at Cold Temperature Dry and Elevated Temperature Wet (저온건조($-55^{\circ}C$) 및 고온다습 조건($108.3^{\circ}C$)의 기계적 체결 홀이 탄소섬유강화 복합재의 강도 특성에 미치는 영향 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.82-88
    • /
    • 2009
  • The effect of open and filled holes on the strength behavior of carbon fiber reinforced polymeric (CFRP) composites was investigated. The strength was measured at room temperature dry, cold temperature dry, $-55^{\circ}C$, and elevated temperature wet, $108.3^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, it is shown that the filled hole tensile strength is larger than that of open hole by reducing damage around the hole due to the constraint imposed by the fastener. The tensile strength at cold temperature dry, $-55^{\circ}C$ is increased with the brittleness by the thermal expansion coefficient of fiber and matrix. The compressive strength at elevated temperature wet, $108.3^{\circ}C$ is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

A Study on Tensile Properties of CFRP Composites under Cryogenic Environment (극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구)

  • Kim Myung-Gon;Kang Sang-Guk;Kim Chun-Gon;Kong Cheol-Won
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.52-57
    • /
    • 2004
  • In this study, mechanical tensile properties of carbon fiber reinforced polymeric (CFRP) composite cycled with thermo-mechanical loading under cryogenic temperature (CT) were measured using cryogenic environmental chamber. Thermo-mechanical tensile cyclic loading (up to 10 times) was applied to graphite/epoxy unidirectional laminate composites far room temperature (RT) to $-50^{\circ}C$, RT to $-100^{\circ}C$ and RT to $-150^{\circ}C$. Results showed that tensile stiffness obviously increased as temperature decreased while the thermo-mechanical cycling has little influence on it. Tensile strength, however, decreased as temperature down to CT while the reduction of strength showed little after CT-cycling. For the analysis of the test results, coefficient of thermal expansion (CTE) of laminate composite specimen at both RT and CT were measured and the interface between fiber and matrix was observed using SEM images.

The Sag Behavior of STACIR/AW $410mm^2$ Power Line (STACIR/AW $410mm^2$ 송전선의 이도거동)

  • Park, Su-Dong;Kim, Byung-Geol;Kim, Shang-Shu;Lee, Hee-Woong;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il;Min, Byung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1262-1265
    • /
    • 2004
  • 송전용량 증가를 위해 개발되어 최근 본격적으로 사용되고 있는 STACIR/AW 송전선은 송전용량의 증가에 따라 그 운전환경도 변화하여 연속사용온도의 경우, 기존 ACSR 전선의 90t에 비해 높은 $210^{\circ}C$로 규정 되어 있을 만큼 고온에서 운전되고 있다. 따라서 STACIR/AW 송전선은 이도설계와 그 운용에 있어서 운전 온도 상승에 따른 각별한 주의관리가 필요하다 실제 STACIR/AW송전선은 그 설계단계에서도 이와 같은 고온운전 환경을 고려하여 고온에서도 소정강도를 유지하는 내열 Al도체와 이도제어를 위한 낮은 열팽창 특성의 INVAR합금(Fe-35Ni계 합금)을 강선으로 하는 특화된 재료로 구성되어 있다. 그러나 이와 같은 재료 설계적 보완책에도 불구하고 실제 송전선은 전선의 자중, 철탑 간에 형성된 가설장력과 같은 다양한 응력이 고온환경에서 부하되는 복합 열화 상태에 노출되어 있고, 이것은 재료학적인 관점에서 크릴 변형 발생의 가능성을 높이고 있으나 이것에 대한 연구 또는 실험결과는 크게 미미한 실정이다. 본 연구에서는 STACIR/AW $410mm^2$ 송전선과 그 구성소재를 대상으로 $200^{\circ}C$, $300^{\circ}C$에서 장시간 열화한 후, 구성소재의 탄성계수, 열팽창계수 및 STACIR/AW전선의 크림변형 거동을 조사하여 열화에 노출된 STACIR/AW 송전선의 이도변화 거동을 규명하고자 하였다.

  • PDF

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.

Carbon diffusion behavior and mechanical properties of carbon-doped TiZrN coatings by laser carburization (레이저 침탄된 TiZrN 코팅에서 탄소확산거동과 기계적 특성)

  • Yoo, Hyunjo;Kim, Taewoo;Kim, Seonghoon;Jo, Ilguk;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • This study was investigated in carbon diffusion behavior of laser-carburized TiZrN coating layer and the changes of mechanical properties. The carbon paste was deposited on TiZrN coatings, and the laser was irradiated to carburize into the coatings. The XRD peak corresponding to the (111) plane shifted to a lower angle after the carburization, showing the lattice expansion by doped carbon. The decreased grain size implied the compression by the grain boundary diffusion of carbon. The XPS spectra for the bonding states of carbon was analyzed that carbon was substitute to nitrogen atoms in TiZrN, as carbide, through the thermal energy of laser. In addition, the combination of sp2 and sp3 hybridized bonds represented the formation of an amorphous carbon. The cross-sectional TEM image and the inverse FFT of the TiZrN coating after carburizing were observed as the wavy shape, confirming the amorphous phase located in grain boundaries. After the carburization, the hardness increased from 34.57 GPa to 38.24 GPa, and the friction coefficient decreased by 83 %. In particular, the ratio of hardness and elastic modulus (H/E) which is used as an index of the elastic recovery, increased from 0.11 to 0.15 and the wear rate improved by 65 %.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

The surface kinetic properties of $ZrO_2$ Thin Films in dry etching by Inductively Coupled Plasma

  • Yang-Xue, Yang-Xue;Kim, Hwan-Jun;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.105-105
    • /
    • 2009
  • $ZrO_2$ is one of the most attractive high dielectric constant (high-k) materials. As integrated circuit device dimensions continue to be scaled down, high-k materials have been studied more to resolve the problems for replacing the EY31conventional $SiO_2$. $ZrO_2$ has many favorable properties as a high dielectric constant (k= 20~25), wide band gap (5~7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2/Si$ structure. In order to get fine-line patterns, plasma etching has been studied more in the fabrication of ultra large-scale integrated circuits. The relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compound In this study, the surface kinetic properties of $ZrO_2$ thin film was investigated in function of Ch addition to $BCl_3/Ar$ gas mixture ratio, RF power and DC-bias power based on substrate temperature. The figure 1 showed the etch rate of $ZrO_2$ thin film as function of gas mixing ratio of $Cl_2/BCl_3/Ar$ dependent on temperature. The chemical state of film was investigated using x-ray photoelectron spectroscopy (XPS). The characteristics of the plasma were estimated using optical emission spectroscopy (OES). Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling (폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구)

  • Ryu, Sae-Hee;Park, Jong-Ha;Lee, Sun-Yong;Lee, Jae-Sung;Lee, Jae-Chul;Ahn, Sung-Hoon;Kim, Dae-Keun;Chae, Jae-Hong;Riu, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.