• Title/Summary/Keyword: Coefficient of lateral earth pressure

Search Result 46, Processing Time 0.018 seconds

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Settlement Characteristics of Soft Ground Applying the Suction Drain Method (석션드레인공법을 적용한 연약지반의 침하 특성)

  • Han, Sang-Jae;Yoo, Han-Kyu;Kim, Byung-Il;Kim, Soo-Sam
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.15-27
    • /
    • 2013
  • A vacuum pressure method has been developed to solve many problems in the conventional surcharge method such as embankments, and its application has increased in the country. Recently, to control target settlements in the field, there have been many studies on the comparison of settlements between vacuum pressure method and surcharge load method in the same conditions. In this study, the settlement characteristics of soil subjected to vacuum pressure and surcharge pressure are discussed. The results indicate that if vacuum pressure is applied to the improvement of soft ground, there will be inward lateral displacement and the vacuum pressure will induce generally less settlement than a surcharge load of the same magnitude. The range of settlement reduction ratio is 0.54~0.67 based on Hooke's law, 0.91 based on field cases, 0.81 based on laboratory oedometer tests, 0.75 based on the theory of elasticity and coefficient of volumetric compressibility and 0.77~0.93 in its recent applications to the thick soft ground.

A study on the Rock-support response behavior in tunnelling (터널링에 의한 암반-지보 반응거동에 관한 연구)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.321-331
    • /
    • 1998
  • A reliable analysis of tunnelling is needed to accomplish technically sound design and safe and economical construction. For the reliable analysis, a series of procedures of construction which include excavation and support stages must be considered. In this study, rock-support response behavior is studied and simulated in 2-D and 3-D finite element methods. Through the analysis of rock-support response behavior, the effects of the properties of shotcrete on the load distribution ratio can be quantified. The load distribution ratios for different rock types, different unsupported spans and various lateral earth pressure coefficients can be determined from the results of the 3-D finite element analysis. This load distribution ratios can be applied to a practical tunnel design through understanding of the trend of those various factors affecting the rock-support interaction.

  • PDF

A Tunnel Mock-up Test and Numerical Analysis on Steel Fiber Reinforced Shotcrete (강섬유 보강 숏크리트의 터널모형실험 및 수치해석적 검증)

  • You, Kwang-Ho;Jung, Ji-Sung;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.107-117
    • /
    • 2008
  • In this study, the failure and deformation characteristics of steel fiber reinforced shotcrete (SFRS) which is a primary tunnel support was investigated to find out ground-support mutual behavior. To this end, a mock-up of a tunnel was made and experimented with the conditions of lateral earth pressure coefficient 0.5 and 1.0. During the tests, 11 hydraulic cylinders were used for loading. for better simulation of the lateral earth pressure effect, these cylinders were controlled separately by two groups; crown and side wall. Meanwhile, the deformation of shotcrete was measured by 11 LVDTs. Backfill material was also used fur better load transfer from hydraulic cylinders to shotcrete. For the validation of the mock-up test results, 3D numerical analysis is carried out. To do numerical analysis under the same condition as a mock-up test, the load history curve which was obtained during the test was tried to be simulated using an individual FISH routine in the numerical analysis.

Estimation of Ultimate Lateral Resistances of Piles Using CPT Cone Resistance in Sand (사질토지반에서 콘관입저항치 $q_c$에 의한 단말뚝의 극한수평단위지지력 평가)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.71-77
    • /
    • 2008
  • In this study, CPT-based methodology for estimating the ultimate lateral resistance, $p_u$, is proposed and verified for lateral loaded piles in sandy soil. Preexistent methods estimating the ultimate lateral resistance, $p_u$, and the ultimate lateral capacity, $H_u$, of pile have been based on the vertical effective stress, relative density, and the coefficient of lateral earth pressure. Similarly, cone resistance $q_c$ in pure sandy soil is expressed by those essential factors. As correlation between $p_u$ and $q_c$ are normalized with average effective stress ${\sigma}_m$, estimation methodology for the lateral loaded pile of $p_u$ in sandy soil is proposed. The method is verified by calibration chamber test results in pure sand. The standard derivation of estimated $p_u$ is 0.279, and COV (Coefficient Of Variation) of estimated $p_u$ is 0.272. These results showed that the estimated pus by the method are analogous with the measured $p_us$ in calibration chamber test.

Application of genetic Algorithm to the Back Analysis of the Underground Excavation System (지하굴착의 역해석에 대한 유전알고리즘의 적용)

  • 장찬수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.65-84
    • /
    • 2002
  • The Observational Method proposed by Terzaghi can be applied for the safe and economic construction projects where the exact prediction of the behavior of the structures is difficult as in the underground excavation. The method consists of measuring lateral displacement, ground settlement and axial force of supports in the earlier stage of the construction and back analysis technique to find the best fit design parameters such as earth pressure coefficient, subgrade reaction etc, which will minimize the gap between calculated displacement and measured displacement. With the results, more reliable prediction of the later stage can be obtained. In this study, back analysis programs using the Direct Method, based on the Hill Climbing Method were made and evaluated, and to overcome the limits of the method, Genetic Algorithm(GA) was applied and tested for the actual construction cases.

  • PDF

Numerical comparison of bearing capacity of tapered pile groups using 3D FEM

  • Hataf, Nader;Shafaghat, Amin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.547-567
    • /
    • 2015
  • This study investigates the behavior of group of tapered and cylindrical piles. The bearing capacities of groups of tapered and cylindrical piles are computed and compared. Modeling of group of piles in this study is conducted in sand using three-dimensional finite element software. For this purpose, total bearing capacity of each group is firstly calculated using the load-displacement curve under specific load and common techniques. Then, the model of group of piles is reloaded under this calculated capacity to find group settlements, stress states on the lateral surfaces of group block, efficiency of group and etc. In order to calculate the efficiency of each group, single tapered and cylindrical piles are modeled separately. Comparison for both tapered and cylindrical group of piles with same volume is conducted and a relation to predict tapered pile group efficiency is developed. A parametric study is also performed by changing parameters such as tapered angle, angle of internal friction of sand, dilatancy angle of soil and coefficient of lateral earth pressure to find their influences on single pile and pile group behavior.

Performance of laterally loaded piles considering soil and interface parameters

  • Fatahi, Behzad;Basack, Sudip;Ryan, Patrick;Zhou, Wan-Huan;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.495-524
    • /
    • 2014
  • To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model.

A comparative study on stability evaluation of caverns by 2D continuum analysis in terms of shape factor (2차원 연속체 해석에 의한 지하공동 형상비별 안정성 평가 비교)

  • You, Kwang-Ho;Jung, Ji-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • The construction of underground structures such as oil and food storage caverns are recently increasing in our country. The stability of those underground caverns are greatly influenced by their shape and size. In this study therefore, the effect that the shape of an underground cavern have on its stability were analyzed in terms of safety factor. To this end, caverns with 5 different shapes were investigated and sensitivity analyses were performed based on rock class, overburden, and lateral earth pressure coefficient. The proper amount of shotcrete and rockbolt as supports of a cavern was also assumed based on the shape and site of the cavern and rock conditions. This study is expected to be helpful in designing and evaluating the stability of caverns in future.

  • PDF

Failure Modes of Vertical Ground Anchor in Plane Strain (평면변형률 상태에 있는 연직지반앵커의 파괴모-드)

  • Im, Jong-Cheol;;Park, Seong-Jae
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.43-58
    • /
    • 1990
  • In order to get ultimate pullout resistance of ground anchor, the position of failure surface, normal stress and friction angle on the failure surface should be known. In this study, the position of failure surface is obtained by observing deformation of ground around anchor, and stresses on the anchor surface are analyzed by measuring normal and shear stresses on the anchor surface through model anchor test in plane strain. In addition, the relationship between lateral earth pressure and the position of failure surface is analyzed and the formula for calculating ultimate pullout resistance of anchor is proposed by using non-dimensional coefficient of ultimate pullout resistance.

  • PDF