• Title/Summary/Keyword: Coefficient of heating performance

Search Result 206, Processing Time 0.03 seconds

Analysis of Thermodynamic Design Data for Heating of Double - Effect Solar Absorption System using LiBr - water and Ethylene Glycol Mixture (에틸렌글리콜 혼합액을 사용하고, 태양열을 보조열원으로 하는 이중효용 흡수식 시스템의 난방 특성해석)

  • Won, S.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2002
  • Analysis of thermodynamic design data of double effect solar absorption heat pump system for heating has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data. enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture (H2O: CHO ratio 10:1 by mole) by computer simulation. The obtained results, COP and mass flow ratio of the water-lithium bromide-ethylene glycol system, are compared with data for the water-Libr pair solution.

A Study on the Heat pump - Latent Heat Storage System for the Greenhouse Heating (그린하우스 난방을 위한 열펌프-잠열축열 시스템 연구)

  • 송현갑;노정근;박종길;강연구;김현철
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.147-156
    • /
    • 1998
  • It is desirable to use the renewable energy for the greenhouse heating in winter season, it make possible not only to save fossil fuel and conserve green environment but also to promote the quality of agricultural products and reduce the agricultural production cost. In this study the heat pump - PCM latent heat storage system has been developed to use the natural energy as much as possible for the thermal environment control of greenhouse. The coefficient of performance (COP) of the heat pump system was 3~4 with the ambient temperature ranging from 8$^{\circ}C$ to -8$^{\circ}C$, and greenhouse heating effect of the heat pump-PCM latent heat storage system on the basis of the ambient temperature was about 12-15$^{\circ}C$.

  • PDF

Heating Characteristics of Ondol using Heat Pump-Latent Heat Storage System (열펌프-잠열축열시스템을 이용한 온돌의 난방특성)

  • Kim, M.H.;Song, H.K.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2000
  • In these days the hot water circulating Ondol using the fossil fuel boiler is the heating system for the most of the Korean residents. Then it is installed without the heat storage medium in the Ondol heating layer, but the Korean traditional Ondol had been composed with the heat storage medium. The Ondol room without heat storage medium could not be comfortable because the room air temperature is not only changed unstably but also it has a defect too much fuel consumption. Therefore in this study the heat pump-latent heat storage Ondol as the new type of Ondol system was developed to solve these problems mentioned above, and the COP of the heat pump (Coefficient Of Performance), the latent heat storage characteristics in the new type of Ondol system and the temperature variation in the Ondol room with the ambient temperature were analyzed.

  • PDF

Studies on Performance of CO2 Water Heater by Numerical Modeling (수치적 모델링을 통한 이산화탄소 급탕기의 특성 연구)

  • Park, Han Vit;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • Numerical modeling of $CO_2$ water heater was conducted prior to optimal design of medium and large sized $CO_2$ water heater, and the experimental test with small sized $CO_2$ water heater having heat capacity of 4 kW was completed to verify the present numerical model. The present model estimated the experimental data of COP(coefficient of performance), heating capacity, and the hot water outlet temperature within the range of 3% to 8% of mean deviation. As increase of EEV(electric expansion valve) opening area, decreasing of heating capacity and the hot water outlet temperature, and increasing of COP were found in both experimental and numerical investigation.

A Study on Thermal Performance Analysis of the Sustainable Clayed Hollow Block Wall (친환경 점토질 다공블럭 벽체의 열성능 분석 연구)

  • Jang, Yong-Sung;Park, Hyo-Soon
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.65-70
    • /
    • 2004
  • The purpose of this study is to analysis the thermal performance of the clayed hollow block wall. Its thermal performance was evaluated comparison with the cement block wall, it was generally used in building envelope. To that end, we conducted a insulation performance experiment and heating and cooling load simulation for a respective wall. In addition, we calculated a construction cost for each other's wall. The results of this study can be summarized as follows. (1) According to experiment of a insulation performance, coefficient of overall heat transmission of the cement block wall and clayed hollow block wall was calculated respectively $2.72W/^2K$ and $1.42W/^2K$. (2) The annular load saving of the clayed hollow block wall was evaluated 1.5% larger than its of the cement block wall. (3) The construction cost of the clayed hollow block wall was calculated 73% more expensive than its of the cement block wall. (4) The construction cost of the clayed hollow block composite wall was calculated 13.7% more expensive than its of the cement block composite wall.

Performance Estimation of Hybrid Solar Air-Water Heater on Single Working of Heating Medium (복합형 태양열 가열기에서 열매체 단일운전에 따른 기기성능 평가)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.49-56
    • /
    • 2014
  • Research about hybrid solar air-water heater that can make heated air and hot water was conducted as a part of improving efficiency of solar thermal energy. At this experiment, ability of making heating air and hot water was investigated and compared with traditional solar air heater and flat plate solar collector for hot water when air or liquid was heated respectively. Comparing hybrid solar air-water heater that used in this experiment to other solar air heater studied already, it has a lower efficiency at same mass flow rate. Air channel structure, fin's shape and arrangement in the air channel result in these difference then the ability of air heating need to be improved with changing these thing. In case of making hot water, performance was shown as similar with traditional system although the air channels were established beneath absorbing plate. But the heat loss coefficient was shown higher value by installing of air channel. Also the performance of hot water making was shown lower value at same liquid mass flow rate with traditional flat plate solar collector for hot water. So the necessity of performance improvement at lower mass flow rate of each heating medium can be confirmed.

Performance of the Cooling and Heating of Heat Pump Using Non-azeotropic Refrigerant Mixtures (비공비혼합냉매를 이용한 열펌프의 냉난방성능에 관한 연구)

  • 박기원;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.53-61
    • /
    • 1994
  • An experimental study on heat pump cycle systematizing characteristics for non-azeotropic refrigerant mixtures of R-22+R-114 was reported. Data were obtained under steady state condition at the ranges of parameters, 550- 2, 170kcal/h, 670-2, 990kcal/h, 24-71kg/h, and 0-1, for as cooling capacity, heating capacity, mass 25, 50, 75, and 100 per cent of R-22 by weight fraction for R-22+R-114 mixtures. The results shown that the C.O.P of the 50wt% of R-22 mixture was considerably larger than for pure R-22 and other weight fraction of R-22 mixtures, but the compression power of the 25wt% of R-22 was lower than that of the pure R-22 and the other weight fraction of R-22 mixtures. The hightest value of cooling capacity was obtained at the conditions of evaporating temperature 5.deg.C and R-22 50wt% mixture. In general, with an increase in the R-22 weight fraction for fixed values of the other parameter, the cooling capacity increased at first, obtained a maximum, and then decreasd. This verified the importance of accurate weight fractions od refrigerant mixtures in the heat pump cycle.

  • PDF

Operating characteristics of 3RT heat pumps

  • Moon, Chang-Uk;Choi, Kwang-Hwan;Yoon, Jung-In;Jeon, Min-Ju;Heo, Seong-Kwan;Sung, Yo-Han;Park, Sung-Hyeon;Lee, Jin-Kook;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.140-145
    • /
    • 2017
  • Newly designed vapor-injection heat pumps have been proposed and analyzed in the present study. An economizer-type vapor-injection (V-I) system has been employed as the standard system because of its reliability and simple control method. The V-I system has a re-cooler and re-heater for cooling and heating, respectively. Solar panels have been installed in the V-I heat pump as well as in the re-heater in order to enhance heating capacity and performance. R410A has been employed as a working fluid and performance analysis has been conducted under various conditions. Results are summarized as follows: (1) The V-I system with the re-cooler yielded a marginally higher coefficient of performance (COP) than the conventional V-I refrigeration system. (2) By increasing the re-cooler cooling capacity, enhanced system performance as compared to the conventional V-I system was observed. (3) The re-heater negatively affected the system performance; hence, the V-I heat pump with the re-heater yielded a lower COP than that of the conventional V-I heat pump used for heating. (4) Although the solar panels increased the system performance, this increase could not offset performance degradation by the re-heater.

Simulation and Model Validation of a Parabolic Trough Solar Collector for Water Heating

  • Euh, Seung-Hee;Kim, Dae Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.17-26
    • /
    • 2013
  • The aim of this study is to analyze the performance of a parabolic trough solar collector (PTC) for water heating and to validate the model performance. The simulated model was compared, calibrated and verified with the experimental results. RMSE (Root mean square error) was used to calibrate the convective heat transfer coefficient between the absorber pipe and the ambient air which was the main factor affecting the heat transfer associated with the PTC. The calibrated model was better fitted with the experimental model. The maximum, minimum and mean deviation between the measured and predicted water temperatures differed only $0.81^{\circ}C$, $0.09^{\circ}C$ and $0.31^{\circ}C$ respectively in the calibrated model. RMSE values were decreased from 0.5389 to 0.4910, 0.0134 to 0.0125 and R-squared was increased from 0.9955 to 0.9956 after calibration. The temperature of water was increased from $33.7^{\circ}C$ to $48^{\circ}C$ in 12hour test. The thermal efficiency of the collector was calculated to be 55%. The calibrated model showed good agreement with the experimental data for model validation.

An Experimental Study on Applying Heat Pump System to Facility Horticulture House (히트펌프 시스템의 시설원예 적용에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • As the results of analysis that are applying a heat pump using underground water as heat source of facility horticulture house, temperature change in house, growth of cultivated plants and the crop characteristic, the conclusion can be acquired as follows. It was possible to maintain the chamber temperature through operating heat pump with setting goal temperature at $16^{\circ}C$ and temperature variation at ${\pm}3^{\circ}C$. And cooling and heating coefficient of performance in heat pump system are different from setting room temperature and operation condition of equipment, totally in case that the setting temperature in house is low, the coefficient of performance and the in case that temperature departure is low. In case that the house does not heated, the result of the growth characteristic of cucumber planted last 50days is that cucumber grown in house equipped with heat pump is the most favorable growth characteristic due to maintaining a constant room temperature. After 90 days, the quantity and weight cucumber harvested in each house are averagely 9.8%, 13.1% increase and more heavy weight respectively. So it is researched that crop characteristic is superior.