• Title/Summary/Keyword: Coefficient of heating performance

Search Result 207, Processing Time 0.032 seconds

Thermal Design and Experimental Test of a High-Performance Hot Chuck for a Ultra Precision Flip-Chip Bonder (초정밀 플립칩 접합기용 고성능 가열기의 열적 설계 및 시험)

  • Lee Sang-Hyun;Park Sang-Hee;Ryu Do-Hyun;Han Chang-Soo;Kwak Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.957-965
    • /
    • 2006
  • A high-performance hot chuck is designed as a heating device for an ultra-precision flip-chip bonder with infrared alignment system. Analysis of design requirements for thermal performance leads to a radiative heating mechanism employing two halogen lamps as heating source. The heating tool is made of silicon carbide characterized by high thermal diffusivity and small thermal expansion coefficient. Experimental tests are performed to assess heat-up performance and temperature uniformity of the heating tool. It is revealed that the initial design of hot chuck results in a good heat-up speed but there exist a couple of troubles associated with control and integrity of the device. As a means to resolve the raised issues, a revised version of heating tool is proposed, which consists of a working plate made of silicon carbide and a supporting structure made of stainless steel. The advantages of this two-body heating tool are discussed and the improved features are verified experimentally.

Research on the heating performance of SCW heat pump system for residential house (주거용 건물의 지하수 이용 지열 히트펌프 시스템의 난방성능 특성에 관한 연구)

  • Kim, Ju-Hwa;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-Hwan
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.431-435
    • /
    • 2008
  • Geothermal heat pump system using standing column wells as their ground heat exchanger can be used as a highly efficient source of heating and cooling in massive buildings. But there is no case of a small scale residential house. So this study estimated heating coefficient of performance(COP) of geothermal heat pump system using standing column well type which is excellent in heat recovery in the residential house. As a result of analysis, The COP of heat pump is over average 6 and is excellent. And in consequence of making a comparative study according to the bleeding, the cop is higher in the case of bleeding. Therefore, bleeding affects the performance of the system. This study has shown performance result that stands on actual data. Therefore, this study provides ground data that needs when a low capacity of system designs for a residence with confidence elevation.

  • PDF

Air Intake Door Control for the High Air Conditioning Performance (인테이크 도어 제어를 이용한 고성능 냉난방 시스템)

  • Park, Dongkyou;Kim, Yongchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Recently, the quick heating performance is an important issue in the car because engine power becomes so high. So car makers have been adapted the additional heating devices as like PTC(Positive Temperature Coefficient) heater. And the quick cooling performance is also important issue because its result is used in the IQS(Initial Quality Study). In this paper, control of the HVAC(Heating, Ventilation and Air Conditioning) intake door has been studied for the quick heating and cooling performance. Heating performance is improved $4.0^{\circ}C$ at $-20^{\circ}C$ ambient temperature after 20 minutes. And cooling performance is improved $1.5^{\circ}C$ at $35^{\circ}C$ ambient temperature after 10 minutes. In addition, intake door control system brings on the cost reduction because the flab door can be eliminated. This intake door control system has been adapted to the new developing cars.

Optimum Collector Area and Economic Evaluation for the Greenhouse Heating (태양열 온실 난방에 대한 최척 집열 면적과 경제성 평가)

  • Pak, Ee-Tong;Kim, Kyu-In
    • Solar Energy
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 1982
  • Aim of this study was to obtain the heating performance and the economic evaluation on solar heating system for greenhouse which area of floor was $90m^2$. For heating performance effective solar energy for the greenhouse was compared with overall heating loads including coefficient of heat transfer and conduction. And the economic evaluation solar heating system was evaluated by comparison its initial investiment costing with oil saving cost. Initial investiment costing included collector cost, storage cost, piping cost, control system cost and miscellaneous costs which included pumps, motors etc. The contents of this study included the survey of climate conditions for solar heating, long-term collector performance and optimum collector area of solar heating system in existing greenhouse. The results are follows: 1. Average horizontal radiation during winter was $2,434Kcal/m^2$ day which was the highest value in this country, so the climate conditions of Suwon was suitable for solar heating. 2. Resulting calculation of the optimum collector area was $30m^2$ and the solar energy accounted for 30% of the overall heating load. 3. The capacity of storage tank required 60 liter per unit area ($m^2$) of solar collector.

  • PDF

A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump (해수열원 스크류 히트펌프의 연간 난방운전 성능 모사)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.88-95
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

A Simulation Study on the Annual Heating Performance of the Seawater-Source Screw Heat Pump (해수열원 스크류 히트펌프의 연간 난방운전 성능 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Kang, Byung-Chan;Ra, Ho-Sang;Kim, Hyeon-Ju
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.488-493
    • /
    • 2012
  • In this study, in order to utilize the seawater as a heat source at Gangneung city near the East Sea in Korea, an annual heating performance of a screw heat pump was simulated. For a simulation, the maximum heating capacity of heat pump was assumed at 3.5 MW. An ambient temperature at Gangneung city was calculated from the TMY2 weather data, while the seawater temperature was calculated from the regression equation based on the measurement by the National Fisheries Research and Development Institute of Korea. The heating load was assumed linearly dependent on the ambient temperature, while the maximum heating load was assumed to appear when the ambient temperature is below $-2.4^{\circ}C$, which is the temperature of TAC 2.5% for heating at Gangneung city. A heat pump performance at full-load was calculated from the regression equation, which involves refrigerant's evaporating and condensing temperatures, based on a commercial screw compressor performance map. A heating supply temperature which determines refrigerant's condensing temperature was assumed linearly dependent on the heating load. A performance degradation due to the part-load operation of heat pump was also considered. Simulation results show that an annual heating coefficient of performance ($COP_H$) of a seawater-source screw heat pump is approximately 2.8 and that it is necessary to improve part-load performance to increase an annual performance of the heat pump.

  • PDF

Analysis on Heating Effects of the Vertical Type Geothermal Heat Pump System

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: This paper is aimed at analyzing the heating performance of the vertical closed loop type Geothermal Heat Pump System (GHPS) distributing the farm site and providing basic data of the GHPS. Method: Seedling greenhouse heating was made from October 2012 to May 2013. The seedling greenhouse was divided into 4 sectors (A, B, C and D zone, total $3,300m^2$) with different temperatures. It was heated from 5PM to 8AM, and during the night the greenhouse was covered by non-woven fabric thermal curtains along the upper 2m of the greenhouse for temperature maintenance. In order to analyze the heating performance of the GHPS, power consumption and operating time of the GHPS, inlet and outlet water temperature of the condenser, temperatures of each zone of the greenhouse, and ambient temperature were measured. Results: When operating only one heat pump unit, heat generated in the condenser decreased as the experiment progressed and power consumption increased correspondingly. However, the heating coefficient of performance decreased from 3.3 to 2.0 rapidly. Also, when operating two heat pump units, heat generated in the condenser decreased and power consumption increased. Heating coefficient of performance decreased from 4.5 to 3.7 rapidly. When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and minimum ambient temperature was $-20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. Conclusion: When the set temperature of the greenhouse was $13.7{\sim}20.1^{\circ}C$ and the minimum ambient temperature was $20.8{\sim}4.8^{\circ}C$, the annually accumulated heat and power consumption were 520,623 kW, 142,304 kW, respectively. When operating only one heat pump unit, the heating COP was 2.0~3.3, and when operating 2 heat pump units, it was 3.7~4.5. If several heat pumps are installed in one GHPS, it is suggested that all heat pumps be operated except in special cases. Because the scale of the water pumps are set to the scale of when all heat pump units are operating, if even one unit is not operating, the power consumption will increase. That becomes the cause of COP decrease.

Performance Evaluation of Ground Source Heat Pump System Utilizing Energy Pile in Apartment (공동주택에서 에너지 파일을 이용한 지열히트펌프 시스템의 성능 분석)

  • Lee, Jin-Uk;Kim, Taeyeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2012
  • In Korea, Apartment houses recently occupy over 80% of all buildings. Ground source system has to be designed to consider feature of apartment house. Most apartment houses use PHC pile to get a bearing power of the soil. Therefore, the purpose of this study is to evaluate performance of ground source heat pump system utilizing energy pile under apartment. Object of experiment is low-energy experiment apartment in Song-do and Energy Pile are applied to 80%, 100% energy reduction model for heat-source. First, performance evaluation of Energy Pile geothermal system was done during summer season. As a result, The COP(coefficient of performance) about geothermal heatpump was approximately 5-6 while cooling. In winter season, Long experiment was performed because it was very important to evaluate ground condition for long time. During heating experiment, Indoor room set temperature was $20^{\circ}C$ and kept constant by heating. Coefficient of performance for heat pump and overall system was calculated. It was 3.5-4.5 for COP and 2.5-3.7 for system COP.

An Experimental Study on the Supplemental Cooling and Heating Performance Using 1 kW Thermoelectric Module for Vehicle (열전모듈을 이용한 자동차용 1 kW급 보조 냉난방 시스템의 성능에 관한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.224-230
    • /
    • 2014
  • The purpose of this paper is to investigate the performance of supplemental cooling and heating system equipped with the 1 kW thermoelectric module. The system consist of 96 thermoelectric modules, heat sink with louver fin and water cooling jacket which is attached on the hot side of the thermoelectric module. The cooling and heating performance test of the thermoelectric system is conducted with various conditions, such as intake voltage, air inlet temperature, air flow volume, water inlet temperature and water flow rate at calorimeter chamber in consideration of environmental conditions in realistic vehicle drive. The experimental results of a thermoelectric system shows that the cooling capacity and COP is 1.03 kW, and 1.0, and heating capacity and COP is 1.53 kW, and 1.5 respectively.

Estimation of Greenhouse Heating performance for Ground Filtration Water Source Heat Pump (강변여과수 열원 히트펌프 온실난방 성능시험)

  • Moon, Jongpil;Lee, Sunghyoun;Kwon, Jinkyung;Kang, YounKoo;Lee, Sujang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.200.2-200.2
    • /
    • 2011
  • This study was carried out in order to estimate the greenhouse performance for Ground filtration water source heat pump which was installed for supplying the heat to the paprika greenhouse in Jinju city. Experimental area of Greenhouse was $3,300m^2$, For keeping the heat from greenhouse, single plastic covering and double thermal screen was installed. With considering all of greenhouse insulation condition and designed heatng temperature, heating capacity for experimental greenhouse was calculated as 320,000kcal/hr. Coefficient of performance(COP) of Ground filtration water source heat pump was gauged and greenhouse heating performance was tested from Febuary 1 to Febuary 28 in 2011. The result showed that COP of heat pump was in the range of 3.7~4.7 and COP of heating system was in the range of 3.0~3.5. The vaule of COP was very high and the temperature inside greenhouse was well corresponded to the setting temperature of greenhouse environment controlling system. lots of Ground filtration water made the the number of well fewer and the expense for installing heating system cheaper than that of geothermal system used custmarily. and this system went beyond the limitation of intaking amount of groundwater in normal Groundwater source heat pump.

  • PDF