• Title/Summary/Keyword: Coefficient Matrix

Search Result 835, Processing Time 0.029 seconds

Computation of Wave Propagation over Multi-Step Topography by Partition Matrix Method (분할행렬법에 의한 다중 계단지형에서의 파랑변형 계산)

  • Seo, Seung-Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.377-384
    • /
    • 2009
  • In order to reduce computing time significantly for a large matrix in EFEM of linear waves propagation over ripple beds, each of which is approximated to a multi-step topography, a partition method is presented to calculate reflection coefficients. By use of 10 evanescent modes in the model, the most accurate numerical solutions have been obtained up to date, which show different behaviors of computed reflection coefficient in some cases against the existing results. Both computing time and memory of the present partition model for solving a large matrix are still so much demanding that it is needed to develop an efficient method.

Reducing Noise Using Degree of Scattering in Collaborative Filtering System (협력적 여과 시스템에서 산포도를 이용한 잡음 감소)

  • Ko, Su-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.549-558
    • /
    • 2007
  • Collaborative filtering systems have problems when users rate items and the rated results depend on their feelings, as there is a possibility that the results include noise. The method proposed in this paper optimizes the matrix by excluding irrelevant ratings as information for recommendations from a user-item matrix using dispersion. It reduces the noise that results from predicting preferences based on original user ratings by inflecting the information for items and users on the matrix. The method excludes the ratings values of the utmost limits using a percentile to supply the defects of coefficient of variance and composes a weighted user-item matrix by combining the user coefficient of variance with the median of ratings for items. Finally, the preferences of the active user are predicted based on the weighted matrix. A large database of user ratings for movies from the MovieLens recommender system is used, and the performance is evaluated. The proposed method is shown to outperform earlier methods significantly.

The effects of matrix aging and residual stress changes on $Avimid^{(R)}$ K3B/IM7 laminates (수지 노화와 잔류응력 변화가 $Avimid^{(R)}$ K3B/IM7 복합재 적층에 미치는 영향)

  • Kim, Hyung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.124-130
    • /
    • 2005
  • In this paper, the effects of matrix hygrothermal aging and residual stress changes on $Avimid^{(R)}$ K3B/IM7 laminates in $80^{\circ}C$ water were studied. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, the change in residual stresses. After 500 hours fully saturated aging of the neat resin, the weight gain was 1.55% increase with the diffusion coefficient $7{\times}10^{-6}m^2/s$ and the fracture toughness was decreased about 41%. After 100 hours fully saturated aging of the $[+45/0/-45/90]_s$ K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was 0.41% increase with the diffusion coefficient $1{\times}10^{-6}m^2/s$ and the loss of the microcracking fracture toughness was 43.8% of the original toughness. To see whether the residual stress influenced the fracture toughness, two ply $[90^{\circ}/0^{\circ}]$ laminates were put in $80^{\circ}C$ water from 2 hours to 8 hours. The changes in residual stress in 8 hours are less than 3MPa. Because the 3MPa change is not sufficient to degrade the laminates, the main factor to degrade the microcracking fracture toughness was the degradation of the matrix fracture toughness.

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

Fuzzy System Representation of the Spline Interpolation for differentiable functions

  • Moon, Byung-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.358-363
    • /
    • 1998
  • An algorithm for representing the cubic spline interpolation of differentiable functions by a fuzzy system is presented in this paper. The cubic B-spline functions which form a basis for the interpolation function are used as the fuzzy sets for input fuzzification. The ordinal number of the coefficient cKL in the list of the coefficient cij's as sorted in increasing order, is taken to be the output fuzzy set number in the (k, l) th entry of the fuzzy rule table. Spike functions are used for the output fuzzy sets, with cij's as support boundaries after they are sorted. An algorithm to compute the support boundaries explicitly without solving the matrix equation involved is included, along with a few properties of the fuzzy rule matrix for the designed fuzzy system.

  • PDF

An Efficient Learning Rule of Simple PR systems

  • Alan M. N. Fu;Hong Yan;Lim, Gi Y .
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.731-739
    • /
    • 1998
  • The probabilistic relaxation(PR) scheme based on the conditional probability and probability space partition has the important property that when its compatibility coefficient matrix (CCM) has uniform components it can classify m-dimensional probabilistic distribution vectors into different classes. When consistency or inconsistency measures have been defined, the properties of PRs are completely determined by the compatibility coefficients among labels of labeled objects and influence weight among labeled objects. In this paper we study the properties of PR in which both compatibility coefficients and influence weights are uniform, and then a learning rule for such PR system is derived. Experiments have been performed to verify the effectiveness of the learning rule.

  • PDF

On Development of Vibration Analysis Algorithm of Beam with Multi-Joints (다관절 보의 진동해석 알고리즘의 개발에 관한 연구)

  • 문덕홍;여동준;최명수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 1994
  • The authors apply the transfer influence coefficient method to the 3-dimensional vibration analysis of beam with multi-joints and formulate a general algorithm to analysis the longitudinal, flexural and torsional coupled free vibration. In this paper, the structure, which is mainly founded in the robot arms, cranes and so on, has some crooked parts, subsystems and joints but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at which node the displacement vector is discontinuous. The superiorty of the present method to the transfer matrix method in the computation accuracy was confirmed by the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could ve controlled by varying the values o the spring constants.

  • PDF

Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray (플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성)

  • Min Joon-Won;Yoo Seung-Eul;Kim Young-Jung;Suhr Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

Impact of Structural Shock and Estimation of Dynamic Response between Variables (구조적 충격의 영향과 동적 반응의 추정)

  • Cho, Eun-Jung;Kim, Tae-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.799-807
    • /
    • 2011
  • This study investigates long and short run responses of variables to exogenous shocks by imposing prior restrictions on a contemporaneous structural shock coefficient matrix of the model to identify shocks by endogenous variables in the vector autoregression. The relative importance of each structural shock in variation of each variable is calculated through the identification of proper restrictions (not based on any specific theory but on researcher judgment corresponding to actual situations) and an estimation of the structural vector autoregression. The results of the analyses are found to maintain consistency.

On Development of Vibration Analysis Algorithm of Beam with Multi - Joints(II) (다관절 보의 진동해석 알고리즘 개발에 관한 연구 (II))

  • 문덕홍;최명수;홍숭수;강현석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.256-266
    • /
    • 1997
  • The authors apply the transfer influence coefficient method to the 3. dimensional vibration analysis of beam with multi - joints and formulate a general algorithm to analyse the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure which is mainly found in the robot arms, cranes and so on, has some crooked parts, subsystems and joints, but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at node which the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF