• 제목/요약/키워드: Code Optimization

검색결과 595건 처리시간 0.034초

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

대기권을 비행하는 유도 미사일의 최대 사거리 구현을 위한 외형 형상 최적화 시스템 연구 (An External Shape Optimization Study to Maximize the Range of a Guided Missile in Atmospheric Flight)

  • 양영록;허상범;제소영;박찬우;명노신;조태환;황의창;제상언
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.519-526
    • /
    • 2009
  • 본 논문에서는 커나드와 테일핀을 가진 지대지 유도미사일이 대기권을 비행할 때 최대 사거리를 갖기 위한 효율적인 외형 형상 최적화 기법 연구에 대하여 기술하였다. 이를 위하여 비행궤적 해석 기법과 최적화 기법을 연계하여 미사일의 사거리 증대를 위한 외형 형상 최적화 전산 프로그램 시스템을 구축하였다. 비행궤적 해석부분에서는 반실험적 기법을 이용한 공력해석프로그램인 Missile DATCOM을 직접 연결하여 운동방정식 계산에 필요한 공력계수들을 계산 시간 단계 마다 효율적으로 제공할 수 있게 하였고 최고점 이후의 활공비행 구간에서는 최대 양항비를 갖는 Trim 조건 계산 모듈을 첨가하여 활공비행전 영역에서 최대 양항비 상태에서 지속적으로 비행한다는 가정으로 계산 하였다. 최적화 기법으로는 Response Surface Method(RSM)를 적용하여 계산 시간 효율화를 꾀하였다.

차세대 저전력 멀티뱅크 메모리를 위한 컴파일러 최적화 기법 (Compiler Optimization Techniques for The Next Generation Low Power Multibank Memory)

  • 조두산
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.141-145
    • /
    • 2021
  • 다양한 형태의 메모리 아키텍처가 개발되었고, 이를 효과적으로 사용하기 위한 여러 컴파일러 최적화 기법이 연구되었다. 특히, 모바일 컴퓨팅 디바이스에서 메모리는 성능을 결정하는 주요 컴포넌트이기 때문에 이를 지원하기 위한 다양한 최적화 기법들이 개발되었다. 최근에는 하이브리드 형태의 메모리 아키텍처에 대한 연구가 많이 진행되고 있기 때문에 이를 지원하기 위한 다양한 컴파일러 기법이 연구되고 있다. 시장의 요구조건에 맞추어 저전력에 대한 제약조건과 필요한 최소한의 성능을 달성하기 위하여 기존의 컴파일러 최적화 기법들이 사용될 수 있다. 이러한 최적화 기법들을 활용한 저전력 효과 및 성능 개선 정도를 파악하기 위한 레퍼런스가 제대로 제공되지 못하고 있는 실정이다. 본 연구는 기존의 컴파일러 기법에 대한 실험 결과를 멀티뱅크 메모리 아키텍처 개발의 레퍼런스로 제공하기 위하여 진행되었다.

Optimum design of steel space frames under earthquake effect using harmony search

  • Artar, Musa
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.597-612
    • /
    • 2016
  • This paper presents an optimization process using Harmony Search Algorithm for minimum weight of steel space frames under earthquake effects according to Turkish Earthquake Code (2007) specifications. The optimum designs are carried out by selecting suitable sections from a specified list including W profiles taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-Load and Resistance Factor Design (LRFD) specifications, lateral displacement constraints and geometric constraints are considered in the optimum designs. A computer program is coded in MATLAB for the purpose to incorporate with SAP2000 OAPI (Open Application Programming Interface) to perform structural analysis of the frames under earthquake loads. Three different steel space frames are carried out for four different seismic earthquake zones defined in Turkish Earthquake Code (2007). Results obtained from the examples show the applicability and robustness of the method.

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF

Fuzzy Model Identification for Time Series System Using Wavelet Transform and Genetic DNA-Code

  • Lee, Yeun-Woo;Kim, Jung-Chan;Joo, Young-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.322-325
    • /
    • 2003
  • In this paper, we propose n new fuzzy model identification of time series system using wavelet transform and genetic DNA code. Generally, it is well known that the DNA coding method is more diverse in the knowledge expression and better in the optimization performance than the genetic algorithm (GA) because it can encode more plentiful genetic information based on the biological DNA. The proposed method can construct a fuzzy model using the wavelet transform, in which the coefficients are identified by the DNA coding method. Thus, we can effectively get the fuzzy model of the nonlinear system by using the advantages of both wavelet transform and DNA coding method. In order to demonstrate the superiority of the proposed method, it is compared with modeling method using the conventional GA.

  • PDF

A Symbiotic Evolutionary Design of Error-Correcting Code with Minimal Power Consumption

  • Lee, Hee-Sung;Kim, Eun-Tai
    • ETRI Journal
    • /
    • 제30권6호
    • /
    • pp.799-806
    • /
    • 2008
  • In this paper, a new design for an error correcting code (ECC) is proposed. The design is aimed to build an ECC circuitry with minimal power consumption. The genetic algorithm equipped with the symbiotic mechanism is used to design a power-efficient ECC which provides single-error correction and double-error detection (SEC-DED). We formulate the selection of the parity check matrix into a collection of individual and specialized optimization problems and propose a symbiotic evolution method to search for an ECC with minimal power consumption. Finally, we conduct simulations to demonstrate the effectiveness of the proposed method.

  • PDF

Study on Conceptual Design Support System for Liquid Metal Reactor

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.289-294
    • /
    • 1996
  • Feasibility study on conceptual design tool for liquid metal reactor has been conducted to optimize the thermohydraulic and neutronic design parameters. To accomplish this task the neutronic code PRISM, fuel performance code and scaling method have been included into the conceptual design support system. ALMR(PRISM 303MWe) has been adopted as the reference plant and principally according to the power level, conceptual design parameters are optimized so that energy balance and neutronics balance seem to be satisfied. This paper presents only the results of optimization on primary system including the IHX system.

  • PDF

광학 시뮬레이션을 통한 PDP cell 구조의 최적화 (Optimization of Geometries in PDP Cell by Optical Simulation)

  • 정선욱;최혜림;강정원
    • 반도체디스플레이기술학회지
    • /
    • 제5권2호
    • /
    • pp.7-10
    • /
    • 2006
  • The detailed studies regarding to the front and rear panel geometries of plasma display were needed to improve the luminance and efficiency. In plasma displays, 3-dimensional optical code can be used to analyze the variation of geometries and the changing of optical properties. The visible light distributions and illuminance were simulated depending on bus electrode position, ITO geometries, and alteration of dielectric layer's properties. This paper is concerned with development of a cell having high luminance and high efficiency for optical simulation. And the result of values could be expected to the application of real POP cell.

  • PDF