• Title/Summary/Keyword: Code Distribution Method

Search Result 390, Processing Time 0.026 seconds

A Study on the Speed Performance of a Medium Patrol Boat using CFD (CFD를 이용한 중형 경비정의 속도성능 평가)

  • Park, Dong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.585-591
    • /
    • 2014
  • The primary objective of the current work is to predict speed performance of the medium patrol boat over $F_N=0.5$ employing experimental materials based on the CFD before model tests. In other words, the predicted brake powers according to ship speeds are assessed satisfying the main engine capacity. The subject ships are selected the two different stern hull forms. The flow computation are conducted considering free surface and dynamic trim using a commercial CFD code(STAR-CCM+). The resistances of the bare-hull are obtained from CFD. Wave patterns, pressures and limiting streamlines on the hull and velocity distribution in the propeller plane for the two hull forms are compared using CFD. The effective powers of the object ships are assessed based on CFD. Resistance increase according to the attached appendages and quasi-propulsive efficiency are employed the experimental datas. Speed performance prediction method concerning high speed vessels like a medium patrol boat is developed employing CFD and experimental data.

Study on Modeling the Spectral Solar Radiation Absorption Characteristics in Determining the surface Temperature of a Ground Object (지상물체의 표면온도 계산을 위한 파장별 태양복사 흡수특성 모델링 연구)

  • Choi, Jun-Hyuk;Gil, Tae-Jun;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • This paper is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground by considering the spectral solar radiation through the atmosphere. The spectral solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code which analyzes the detailed spectral transmission characteristics by considering the atmospheric gas layers. In this paper, the transient temperature distribution over a cylinder is calculated by using the semi-implicit method. The spectral radiative surface properties such as the absorptivity and emissivity of the objects are used to model the effects of the solar irradiation and the surface emission. Both the detailed spectral modeling and the simple total modeling for the solar radiation absorption show fairly good agreement with each other by showing less than 3% difference in surface temperature.

Numerical Study for Prediction of Rock Falls Around Jointed Limestone Underground Opening due to Blast Vibration (발파진동에 의한 절리암반 지하공동의 낙석발생 예측에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.10-16
    • /
    • 2016
  • Recently, transition from open pit to underground mining in limestone mines is an increasing trend in Korea due to environmental issues such as noise, dust and vibrations caused by crushers and equipment. The severe damages in the surrounding rock mass of underground opening caused by explosive blasting may lead to rock fall hazards or casualties. It is well known that variables which mainly affect blast-induced rock falls in underground mining are: blast vibration level, joint orientation and distribution and shape of the cross sections of underground structures. In this study, UDEC program, which is a DEM code, is used to simulate blast vibration-induced rock fall in underground openings. Variation of joint space, joint angle and joint normal stiffness was considered to investigate the effect of joint characteristics on the blast vibration-induced rock fall in underground opening. Finally, jointed rock mass models considering blast-induced damage zone were examined to simulate the critical blast vibration value which may cause rock falls in underground opening.

Diversity and Distribution of Plant Communities on the Ungok Wetland in Gochang (고창 운곡습지의 식물군락 다양성과 분포 특성)

  • Kim, Jong-won;Lee, Seung-eun;Ryu, Tae-bok
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.3
    • /
    • pp.295-304
    • /
    • 2017
  • The Ramsar protected area in Ungok wetland, which has been designated since 2011, was described by syntaxonomy and synchorology. Phytocoenon was identified and named by a traditional method of the $Z{\ddot{u}}rich$-Montpellier School and Code of Phytosociological Nomenclature. Habitat-based vegetation classification has identified into twelve syntaxa consisting of 88 taxa in seven vegetation types: Juncus effusus var. decipiens-Salix koreensis community, Caricis-Salicetum subfragilis, Galium spurium var. echinospermon-Phragmites japonica community, Phragmitetum australis, Scirpetum fluviatilis, Leersia japonica-Typha angustifolia community, Juncus diastrophanthus-Juncus effusus var. decipiens community, Leersicetum japonicae, Nymphoido indicae-Trapetum japonicae (typicum, marsiletosum quadrifoliae subass. nova hoc loco, variante Euryale ferox), Nelumbo nucifera community, Utricularia tenuicaulis community, Potamogetonetum crispi. Actual vegetation map was made by using topographical map of scale 1 : 5,000. Habitat-based management on the Ungok wetland vegetation was required, in which there are composed of two major areas such as the back-swamp vegetation and the limnetic vegetation zone.

The Analysis of Fire-Driven Flow and Temperature in The Railway Tunnel with Ventilation (환기를 동반한 철도터널 화재 연기유속 및 온도장 해석)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1794-1801
    • /
    • 2008
  • Fire-driven flow and temperature distribution in a ventilated tunnel was analyzed by Large Eddy Simulation using FDS code. The simulated tunnel is 182m length, 5.4m wide and 2.4m height. A pool fire was located 112m from tunnel entrance and was taken as a heat source of $0.89m^2$. The heat is assumed to be released uniformly throughout the whole simulated time. The fire strength was 2.76MW and the fuel burnt was octane. The parallel computational method was employed to accelerate the computing time and manage the large grid points which is not possible to handle in the one CPU. The total grid points used were $2.4{\times}10^6$ and 7 CPUs were used to calculate the momentum and energy equations. The simulated results were well compared with the experiments.

  • PDF

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Convergence of Min-Sum Decoding of LDPC codes under a Gaussian Approximation (MIN-SUM 복호화 알고리즘을 이용한 LDPC 오류정정부호의 성능분석)

  • Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.936-941
    • /
    • 2003
  • Density evolution was developed as a method for computing the capacity of low-density parity-check(LDPC) codes under the sum-product algorithm [1]. Based on the assumption that the passed messages on the belief propagation model can be approximated well by Gaussian random variables, a modified and simplified version of density evolution technique was introduced in [2]. Recently, the min-sum algorithm was applied to the density evolution of LDPC codes as an alternative decoding algorithm in [3]. Next question is how the min-sum algorithm is combined with a Gaussian approximation. In this paper, the capacity of various rate LDPC codes is obtained using the min-sum algorithm combined with the Gaussian approximation, which gives a simplest way of LDPC code analysis. Unlike the sum-product algorithm, the symmetry condition [4] is not maintained in the min-sum algorithm. Therefore, the variance as well as the mean of Gaussian distribution are recursively computed in this analysis. It is also shown that the min-sum threshold under a gaussian approximation is well matched to the simulation results.

A Channel Assignment Scheme Using Power Allocation Concept for CDMA Cellular System (CDMA 셀룰러 시스템에서 전력할당개념을 이용한 채널할당기법)

  • Lee, Dong-Myung;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.692-698
    • /
    • 1999
  • In this paper, we proposed the channel assignment scheme for the CDMA(Code Division Multiple Access) cellular system using power allocation concept. Also, the performance of the proposed scheme was analyzed and it was compared with the channel assignment scheme using the fixed power allocation method in the CDMA cellular system. The proposed scheme allocates the power adaptively in according to the traffic loads and the traffic distribution pattern of neighbor cells in the forward link. We found that total call blocking probability (Pr) is more dependent on blocking probability($P_B$) than outage probability (Po) under physical number of channels ($C_{th}$)=30. Pr(Call Blocking Probability) is dependent on $P_B$(Blocking Probability) and Po(Outage Probability) at the same ratio under $C_{th}$=32, in which case P$P_{TA}$(blocking probability for the adaptive power allocation) is greater than $P_{TF}$(blocking probability for the fixed power allocation) about 6%.

  • PDF

Designing and Developing an Automatic Robot System for the Itemized Loading of Apple Boxes at the Agriculture Products Processing Center (거점산지유통센터의 사과박스 구분적재 자동화 로봇 시스템 설계 및 구현)

  • Kim, Myung-Sic;Kim, Kyu-Ik;Ryu, Keun Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.689-698
    • /
    • 2015
  • Currently, the itemized box loading operation at the Agriculture Products Processing Center which distributes agricultural products for the region is carried out manually. The process of loading agricultural products requires great manpower and had been resolved through the part-time employment of the residents of farm villages. However, recently it has become quite difficult to secure manpower as the aging within the rural community has been intensified. Hence, the necessity for countermeasures such as facility automation or use of robots have become necessary. This study suggests an automatic robot system for the itemized loading of apple boxes at the Agriculture Products Processing Center. The suggested method is to design and develop equipment such as a conveyer, robot, and bar code reader. In addition, a sorting plan, operational control, generation of control information, and software module that could monitor the inside of the Agriculture Products Processing Center is needed. After test-operating and evaluating the developed system, the existing manual work would be replaced with the automated robot system in order to enhance work efficiency and resolve safety issues.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.