• Title/Summary/Keyword: Coconut shell

Search Result 48, Processing Time 0.029 seconds

Physical Properties of Carbon Prepared from a Coconut Shell by Steam Activation and Chemical Activation and the Influence of Prepared and Activated Carbon on the Delivery of Mainstream Smoke

  • Ko, Dong-Kyun;Shin, Chang-Ho;Jang, Hang-Hyun;Lee, Young-Taeg;Rhee, Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Several activated carbon in different specific surface area was prepared by steam and chemical activation of coconut shell. Products were characterized by BET ($N_2$) at 77K, and probed to be highly specific surface area of $1580m^2/g$ and pore volume that had increased with activating conditions. And also we have analyzed the adsorption efficiency of vapor phase components in cigarette mainstream smoke in order to evaluate the relationship between thesmoke components and the physicochemical properties of activated carbons. As a result of this study, the delivery of mainstream smoke was directly affected by the specific surface area and the pore size of activated carbon. The activated carbon prepared by steam activation exhibited better adsorption efficiency on the vapor phase components in mainstream smoke compared with activated carbon prepared by $ZnCl_2$, due to the higher micro-pore area of 66%. But the adsorption efficiency of semi-volatile matters such as phenolic components in a main stream smoke by the activated mesoporous carbon prepared by $ZnCl_2$ is more effective. From the these results, we can conclude that specific surface area by the micropore area increased the adsorption efficiency of activated carbon on vapour phase components, but semi-volatiles or particulate matter was affected by the ratio of mesopore area in total specific surface area.

Adsorption Characteristics of Waste-Paint Activated Carbon (廢 페인트 活性炭의 吸着特性)

  • 박정호;박승조
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.9-14
    • /
    • 2000
  • Comparing the adsorption characteristics of coconut shell activated carbon (CSAC) and waste paint activated carbon (WPAC), Freundlich adsorption isotherms of alkylbenzene sulfonate (ABS) obtained from the secondary treatment water of H company and effluent of D company were estimated q=23.12 $C^{0.42}$ , q=18.32 $C^{0.38}$ with WPAC and $q=36.76C^{1.37}$ /, q=26.67 $C^{0.42}$ with CSAC respectively. In the case of H company, breakthrough time of the ABS using CSAC by continuous experiment was estimated 680 minute md that of WPAC was 610 minute. In the case of D company effluent, CSAC was estimated 720 minute, and that of WPAC was estimated 640 minute to reach the breakthrough. From the above results, it is possible to replace the coco-nut shell activated carbon with wasted paint activated carbon.

  • PDF

Performance of cyclone separator for syngas production in downdraft gasifier

  • Kumara, Sunil;Shukla, S.K.
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.223-237
    • /
    • 2016
  • The excess use of conventional sources of energy by the industries and power sector result in acute shortage of energy produced by fossil fuel. To overcome this energy crisis, biomass feedstock is used to produce syngas or producer gas. For cleaning the dust particle present in the producer gas cyclone separators are largely used. In this paper we investigate the performance parameters of cyclone separator mainly efficiency and pressure drop for different feedstock. Cyclone performance has been evaluated based on experimentation and empirical approach using Leith and Licht model. The same has also been calculated by using turbulent RSM in Ansys Fluent for Wood and Coconut shell feedstock. Experimental results show that using feed stock with 10 % Calcium oxide (CaO) by weight, the efficiency of cyclone got reduced from 71.87% to 70.75% for wood feed stock, whereas in case of coconut shell, the cyclone efficiency got reduced from 78% to 73.44%. It is also seen that Leith and Licht model and Reynolds stress model (RMS) predicts very close to the particle collection efficiency evaluated by using experimental data.

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons

  • Wu, Jin-Gyu;Hong, Ik-Pyo;Park, Sei-Min;Lee, Seong-Young;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by $HNO_3$ and then heat treated at $800^{\circ}C$ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.

The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling (공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향)

  • Park, Youn Jung;Lee, Sang Hoi;Kim, Chi Nyon;Won, Jong Uk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

Air Pollutant Removal Rates of Concrete Permeable Blocks Produced with Coated Zeolite Beads (코팅된 제올라이트 비드를 이용한 콘크리트 투수블록의 대기전구물질 제거율 평가)

  • Park, Jun-Seo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.153-164
    • /
    • 2023
  • The objective of this study is to examine the removal rate of air pollutants, specifically sulfur oxides (SOx) and nitrogen oxides(NOx), using concrete permeable blocks containing zeolite beads coated with materials capable of eliminating these pollutants. Titanium dioxide(TiO2) powder and coconut shell powder were utilized for the removal of SOx and NOx and were applied as coatings on the zeolite beads. Concrete permeable block specimens embedded with the coated zeolite beads were produced using an actual factory production line. Test results demonstrated that the concrete permeable block containing zeolite beads coated with coconut shell powder in the surface layer achieved SOx and NOx removal rates of 12.5% and 99%, respectively, exhibiting superior performance compared to other blocks. Additionally, the flexural strength and slip resistance were 5.3MPa and 65BPN or higher, respectively, satisfying the requirements specified in KS F 4419 and KS F 4561. Conversely, the permeability coefficient exhibited low permeability, with grades 2 and 3 before and after contaminant pollution, according to the standard for 'design, construction, and maintenance of pavement using permeable block'. In conclusion, incorporating zeolite beads coated with coconut shell powder in the surface layer enables simultaneous removal of SOx and NOx, irrespective of ultraviolet rays, while maintaining adequate flexural strength and slip resistance. However, the permeability is significantly reduced, necessitating further improvements.

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Black 1 Using Coconut Shell-Based Granular Activated Carbon (야자각계 입상 활성탄의 Acid Black 1 염료 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Dong-Chang;Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.590-598
    • /
    • 2016
  • In this study, the adsorption behavior from aqueous solution as well as kinetic and thermodynamic parameters of Acid Black 1 were investigated through batch reaction using coconut shell based granular steam activated carbon. The effects of various adsorption parameters such as pH, initial concentration, contact time, temperature were studied. To confirm the effect of pH, pHpzc measurements were analyzed followed by measuring removal efficiencies of Acid Black 1 at the pH range from 3 to 11. Experimental equilibrium adsorption data were fitted using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption isotherm. The conformity of adsorption reaction for pseudo first and second order model were evaluated through kinetic analysis. Values of enthalpy change and activation energy were also investigated through thermodynamic analysis and it was confirmed that the adsorption process was endothermic. The spontaneity of adsorption process was evaluated using the values of entropy and Gibbs free energy changes.

Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coconut Shell Based Activated Carbon (야자계 활성탄에 의한 Brilliant Blue FCF 염료의 흡착 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.309-314
    • /
    • 2015
  • Adsorption of brilliant blue FCF dye from aqueous solution using coconut shell based activated carbon was investigated. Batch experiments were carried out as function of adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir and Freundlich model. The results indicate that Freundlich model provides the best correlation of the experimental data. Base on the estimated Freundlich constant (1/n=0.129~0.212), this process could be employed as effective treatment method. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy value (-4.81~-10.33 kJ/mol) and positive enthalpy value (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

A Study on Evaluation of Adsorption Performance of Humic Acid on Granular Activated Carbon (Humic acid 제거를 위한 국산 입상활성탄의 흡착성능 평가에 관한 연구)

  • Shin, Sung-Gyo;Kim, Jong-Gu;Park, Cheong-Gil
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.73-81
    • /
    • 1993
  • Adsorption process using granular activated carbon(GAC) has been considered as one of the most effective water treatment technologies to remove humic acid which is recon- niEed as trihalomethane(THM) precursor in chlorination. To design the most effective GAC process, it is necessary to conduct the test of adsor- ption performance by means of isothem, batch rate and column studies and to select the most effective activated carbon according to raw materials of GAC - lignite and coconut shell. The objective of this study is to investigate the adsorption performance of humid acid on two activated carbons - lignite activated carbon(LAC) and coconut shell activated car- bon(CAC) made in Korea. It is available to represent UV-abs and trihalomethane formation potential(THMFP) as concentration of humic acid due to good relationship. The adsorption capacity of humid acid is not concerned with surface area of activated carbon but with pore size related to about $100{\AA}$, and then LAC forming at the extent of mesopore is found to be eight times more effective in adsorption capacity than CAC forming at micropore. The adsorption capacity of LAC and CAC is better at pH 5.5 than at pH 7. Pore and surface diffusion coefficients calculated from the diffusion model are $7.61\times10^{-13}m^2/sec$, $3.52\times10^{-15}m^2/sec$ for CAC, and $3.38\times10^{-12}m^2$/sec and $Ds=1.48{\times}10^{-15}m^2/sec$ for GAC respectively. From the results of column test it shows that the performance of LAC is also better than CAC and the optimal EBCT(Empty Bed Contact Time) is 4.52min. and activated carbon removes selectively the components of humic acid to be easily formed to THM.

  • PDF

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.