• 제목/요약/키워드: Coconut shell

검색결과 48건 처리시간 0.032초

Physical Properties of Carbon Prepared from a Coconut Shell by Steam Activation and Chemical Activation and the Influence of Prepared and Activated Carbon on the Delivery of Mainstream Smoke

  • Ko, Dong-Kyun;Shin, Chang-Ho;Jang, Hang-Hyun;Lee, Young-Taeg;Rhee, Moon-Soo
    • 한국연초학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 2008
  • Several activated carbon in different specific surface area was prepared by steam and chemical activation of coconut shell. Products were characterized by BET ($N_2$) at 77K, and probed to be highly specific surface area of $1580m^2/g$ and pore volume that had increased with activating conditions. And also we have analyzed the adsorption efficiency of vapor phase components in cigarette mainstream smoke in order to evaluate the relationship between thesmoke components and the physicochemical properties of activated carbons. As a result of this study, the delivery of mainstream smoke was directly affected by the specific surface area and the pore size of activated carbon. The activated carbon prepared by steam activation exhibited better adsorption efficiency on the vapor phase components in mainstream smoke compared with activated carbon prepared by $ZnCl_2$, due to the higher micro-pore area of 66%. But the adsorption efficiency of semi-volatile matters such as phenolic components in a main stream smoke by the activated mesoporous carbon prepared by $ZnCl_2$ is more effective. From the these results, we can conclude that specific surface area by the micropore area increased the adsorption efficiency of activated carbon on vapour phase components, but semi-volatiles or particulate matter was affected by the ratio of mesopore area in total specific surface area.

廢 페인트 活性炭의 吸着特性 (Adsorption Characteristics of Waste-Paint Activated Carbon)

  • 박정호;박승조
    • 자원리싸이클링
    • /
    • 제9권6호
    • /
    • pp.9-14
    • /
    • 2000
  • CSAC와 WPAC의 흡착특성을 보면 H공장 2차 처리수와 D공장 배출수에 함유된 ABS흡착에서 얻어진 Freundlich흡착등온식은 WPAC인 경우 q=23.12 $C^{ 0.42}$, q=18.32 $C^{0.38}$ 이고 CSAC인 경우 각각 $q=36.76C^{1.37}$ , q=26.67 $C^{0.42}$ 이었다. H공장 방류수의 파과점은 CSAC인 경우 680분이었고 WPAC는 610분이었다. 한편 D공장 배출수의 파과점은 CSAC인 경우 720분이었고 WPAC은 640분이었다. 이상의 결과로부터 CSAC 대체물로서 WPAC이 가능성이 있을 것으로 생각된다.

  • PDF

Performance of cyclone separator for syngas production in downdraft gasifier

  • Kumara, Sunil;Shukla, S.K.
    • Advances in Energy Research
    • /
    • 제4권3호
    • /
    • pp.223-237
    • /
    • 2016
  • The excess use of conventional sources of energy by the industries and power sector result in acute shortage of energy produced by fossil fuel. To overcome this energy crisis, biomass feedstock is used to produce syngas or producer gas. For cleaning the dust particle present in the producer gas cyclone separators are largely used. In this paper we investigate the performance parameters of cyclone separator mainly efficiency and pressure drop for different feedstock. Cyclone performance has been evaluated based on experimentation and empirical approach using Leith and Licht model. The same has also been calculated by using turbulent RSM in Ansys Fluent for Wood and Coconut shell feedstock. Experimental results show that using feed stock with 10 % Calcium oxide (CaO) by weight, the efficiency of cyclone got reduced from 71.87% to 70.75% for wood feed stock, whereas in case of coconut shell, the cyclone efficiency got reduced from 78% to 73.44%. It is also seen that Leith and Licht model and Reynolds stress model (RMS) predicts very close to the particle collection efficiency evaluated by using experimental data.

Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons

  • Wu, Jin-Gyu;Hong, Ik-Pyo;Park, Sei-Min;Lee, Seong-Young;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.137-144
    • /
    • 2008
  • The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by $HNO_3$ and then heat treated at $800^{\circ}C$ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.

공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향 (The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling)

  • 박윤정;이상회;김치년;원종욱;노재훈
    • 한국산업보건학회지
    • /
    • 제8권1호
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

코팅된 제올라이트 비드를 이용한 콘크리트 투수블록의 대기전구물질 제거율 평가 (Air Pollutant Removal Rates of Concrete Permeable Blocks Produced with Coated Zeolite Beads)

  • 박준서;양근혁
    • 한국건축시공학회지
    • /
    • 제23권2호
    • /
    • pp.153-164
    • /
    • 2023
  • 이 연구의 목적은 황산화물(SOx) 및 질소산화물(NOx)을 제거할 수 있는 소재를 코팅한 제올라이트 비드를 이용하여 제조된 콘크리트 투수블록의 대기전구물질의 제거율을 평가하는데에 있다. 대기전구물질인 SOx와 NOx를 제거하기 위해서 사용된 소재는 이산화티타늄(TiO2) 분말과 야자각 분말이며, 이 두 소재를 제올라이트 비드에 코팅하였다. 시편은 실제 공장생산라인을 이용하여 제올라이트 비드가 임베디드된 콘크리트 투수블록을 제작하였다. 실험결과 표층에서 야자각 분말로 코팅된 제올라이트 비드가 첨가된 콘크리트 투수블록의 SOx와 NOx 제거율은 각각 12.5% 및 99%로서 다른 블록보다도 우수한 성능을 발휘하였다. 또한, 휨 강도 및 미끄럼저항성은 각각 5.3MPa 및 65BPN 이상으로 KS F 4419 및 KS F 4561에서 제시된 값을 만족하였다. 반면, 투수계수는 서울특별시의 투수블록 포장 설계, 시공 및 유지관리 기준으로 협잡물 오염 전후에 각각 3 및 4등급으로 낮은 투수성을 보였다. 결과적으로 표층에서 야자각 분말로 코팅된 제올라이트 비드의 첨가는 충분한 휨강도 및 미끄럼저항성을 확보하면서 자외선에 관계없이 SOx와 NOx를 동시에 제거할 수 있지만, 투수성이 낮으므로 이에 대한 보완이 필요하다.

야자각계 입상 활성탄의 Acid Black 1 염료 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구 (Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Black 1 Using Coconut Shell-Based Granular Activated Carbon)

  • 이동창;이종집
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.590-598
    • /
    • 2016
  • 본 연구는 흡착제로 야자각계 수증기 활성화 입상 활성탄을 사용하여 Acid Black 1 수용액에서의 흡착 거동과 동역학적, 열역학적 파라미터에 대해 회분식 반응을 통해 조사하였다. 흡착변수로는 pH, 초기농도, 접촉시간, 온도를 사용하였다. pH에 대한 영향을 조사하기 위해 pHpzc 값을 분석한 뒤 pH 3-11 범위에서 제거율을 조사하였다. 흡착평형자료로부터 Langmuir, Freundlich, Temkin, Dubinin-Radushkevich 등온 흡착식에 대한 적합성을 평가하였다. 흡착공정에 대한 동역학적 해석을 통해 유사 1차반응식과 유사 2차반응식에 대한 흡착반응의 일치도를 평가하였다. 열역학적 해석을 통해 엔탈피 변화 값과 활성화에너지 값을 조사하여 이를 통해 흡착공정이 흡열반응인지를 확인하였으며, 엔트로피 변화 값과 자유에너지 값을 통해 흡착공정의 자발성을 확인하였다.

야자계 활성탄에 의한 Brilliant Blue FCF 염료의 흡착 동력학 및 열역학에 관한 연구 (Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coconut Shell Based Activated Carbon)

  • 이종집
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.309-314
    • /
    • 2015
  • 야자계 활성탄을 사용하여 수용액으로부터 brilliant blue FCF 염료의 흡착에 대해 조사하였다. 회분식 실험은 흡착제의 양, 초기농도와 접촉시간과 온도를 흡착변수로 사용하여 수행하였다. 흡착평형자료는 Langmuir와 Freundlich 식을 사용하여 해석하였으며, Freundlich 식이 더 좋은 일치도를 나타냈다. 평가된 Freundlich 상수(1/n=0.129~0.212)로부터 활성탄에 의한 brilliant blue FCF의 흡착조작이 적절한 처리방법이 될 수 있음을 알았다. 흡착속도실험자료를 유사일차반응속도식과 유사이차반응속도식에 적용해 본 결과, 흡착동력학은 유사이차반응속도식에 잘 맞는 것으로 나타났다. 음수값의 Gibbs 자유에너지(-4.81~-10.33 kJ/mol)와 양수값의 엔탈피(+78.59 kJ/mol)는 흡착이 자발적이고 흡열공정으로 진행된다는 것을 나타낸다.

Humic acid 제거를 위한 국산 입상활성탄의 흡착성능 평가에 관한 연구 (A Study on Evaluation of Adsorption Performance of Humic Acid on Granular Activated Carbon)

  • 신성교;김종구;박청길
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.73-81
    • /
    • 1993
  • Adsorption process using granular activated carbon(GAC) has been considered as one of the most effective water treatment technologies to remove humic acid which is recon- niEed as trihalomethane(THM) precursor in chlorination. To design the most effective GAC process, it is necessary to conduct the test of adsor- ption performance by means of isothem, batch rate and column studies and to select the most effective activated carbon according to raw materials of GAC - lignite and coconut shell. The objective of this study is to investigate the adsorption performance of humid acid on two activated carbons - lignite activated carbon(LAC) and coconut shell activated car- bon(CAC) made in Korea. It is available to represent UV-abs and trihalomethane formation potential(THMFP) as concentration of humic acid due to good relationship. The adsorption capacity of humid acid is not concerned with surface area of activated carbon but with pore size related to about $100{\AA}$, and then LAC forming at the extent of mesopore is found to be eight times more effective in adsorption capacity than CAC forming at micropore. The adsorption capacity of LAC and CAC is better at pH 5.5 than at pH 7. Pore and surface diffusion coefficients calculated from the diffusion model are $7.61\times10^{-13}m^2/sec$, $3.52\times10^{-15}m^2/sec$ for CAC, and $3.38\times10^{-12}m^2$/sec and $Ds=1.48{\times}10^{-15}m^2/sec$ for GAC respectively. From the results of column test it shows that the performance of LAC is also better than CAC and the optimal EBCT(Empty Bed Contact Time) is 4.52min. and activated carbon removes selectively the components of humic acid to be easily formed to THM.

  • PDF

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권3호
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.