• Title/Summary/Keyword: Cochlodinium

Search Result 204, Processing Time 0.022 seconds

Isolation and Characteristics of Brachybacterium sp. SY -97 Killing the Harmful Dinoflagellate Cochlodinium polykrikoides (유해적조생물 Cochlodinum polykrikoides를 살멸하는 Brachybacterium sp. SY-97의 분리 및 특성)

  • Kim, Yun-Sook;Jeong, Seong-Yun;Lee, Sang-Joon;Lee, Won-Jae
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.435-443
    • /
    • 2009
  • A bacterial strain SY-97 that showed algicidal activity against Cochlodinium polykrikoides was isolated from coastal water of Uljin (eastern coast of Korea) in August, 2005. The isolated strain was identified as Brachybacterium sp. by morphological and biological tests, and analysis of 16S rDNA sequence. The optimal culture conditions for the growth of strain SY-97 were $30^{\circ}C$, initial pH 7.0, and salinity 2.0%. From the result of cell culture insert experiment, Brachybacterium sp. SY-97 is assumed to produce secondary metabolites which have algicidal activity. When 10% culture filtrate of this strain was applied to C. polykrikoides ($1.2{\times}10^4\;cells/m{\ell}$) cultures, 100% of C. polykrikoides cells was destroyed within 15 hours. The released algicides were heat-tolerant to $100^{\circ}C$ and stable in pH $6.0{\sim}10.0$. These results suggest that Brachybacterium sp. SY-97 is potentially useful for controlling outbreaks of C. polykrikoides.

An advanced tool, droplet digital PCR (ddPCR), for absolute quantification of the red-tide dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae)

  • Lee, Hyun-Gwan;Kim, Hye Mi;Min, Juhee;Kim, Keunyong;Park, Myung Gil;Jeong, Hae Jin;Kim, Kwang Young
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.189-197
    • /
    • 2017
  • To quantify the abundance of the harmful dinoflagellate Cochlodinium polykrikoides in natural seawaters, we developed the innovative procedure using a droplet digital PCR (ddPCR) with C. polykrikoides-specific primers targeting the internal transcription sequence (ITS). The abundance of C. polykrikoides was estimated by the specific copy number of target ITS DNA segments per cell in cultures and natural water samples. The copy number per C. polykrikoides cell as acquired by ddPCR was $157{\pm}16$, which was evaluated against known cell numbers through a simplified protocol preparing DNAs. The abundances of C. polykrikoides in the waters of different locations estimated by ddPCR agreed with the number of cells visually counted under a microscope. This protocol was used to measure the abundance of C. polykrikoides close to and further off the southern coast of Korea in August of 2016 and 2017. The practical application showed that this method can reduce time for analysis and increase accuracy.

Rapid detection and Quantification of Fish Killing Dinoflagellate Cochlodinium polykrikoides (Dinophyceae) in Environmental Samples Using Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Seo, Mi-Kyung;Kim, Chang-Hoon;Park, Young-Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.205-208
    • /
    • 2008
  • The mixotrophic dinoflagellate Cochlodinium polykrikoides was reported to be linked to major fish kills in Korea and Japan since the 1990s. Rapid and sensitive detection of microalgae has been problematic because morphological identification of dinoflagellates requires light microscopic and scanning electron microscopic observations that are time consuming and laborious compared to real-time PCR. To address this issue, a real-time PCR probe targeting the ITS2 rRNA gene was used for rapid detection and quantification of C. polykrikoides. PCR inhibitors in water column samples were removed by dilution of template DNA for elimination of false-negative reactions. A strong association between cell quantification using real-time PCR and microscopic counts suggests that the real-time PCR assay is an alternative method for cell estimation of C. polykrikoides in environment samples.

Characteristics of Organic Substances Produced from Cochlodiniumpolykrikoides (Dinophyceae) (Cochlodinium polykrikoides(Dinophyceae)에서 분비되는 유기물질의 특성)

  • Kang, Yang-Soon;Kwon, Jung-No;An, Kyoung-Ho
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.253-259
    • /
    • 2006
  • Organic substances are released from phytoplankton cells during all phases of growth. The type and amounts of organic substance excreted and the effects of nutrient limitation are often highly species-specific. Dinoflagellate, Cochlodinium polykrikoides grown in batch culture produced an exopolysaccharide. Exopolysaccharide and intracellular polysaccharide concentrations increased as C. polykrikoides cultures progressed from exponential phase, through stationary phase, to declining phase. In the exponential phase, the concentration of exopolysaccharide was relatively low, but in the stationary phase, it showed a rapid increase which seemed to coincide with the depletion of nitrate from the medium. Of the 20 amino acids analyzed, proline dominated in the organic matter of all cultures ranging from 48.2 to 79.9 nmol L–1, and constituting the 20-90% of total amino acids, and followed by histamine varying from 0.7 to 47.5 nmol L–1. Leucine and cysteine were also abundant in the stationary phase. The release rates of exopolysaccharide and intracellualr polysaccharide were higher the end of stationary phase than in the exponential phase. Exopolysaccharide concentration per cell was more than two times higher during the end of stationary phase than that in exponential phase. C. polykrikoides produced extracellular polysaccharide at a rate of 47.04 pg cell–1 day–1.

Effect of Nutrients on Competition among the Harmful Dinoflagellates Cochlodinium polykrikoides and the Diatom Skeletonema sp. in Jaran Bay Using a Mathematical Model (수치모델을 활용한 자란만에서 유해 와편모조류 Cochlodinium polykrikoides와 규조류 Skeletonema sp.의 경쟁에 미치는 영양염의 영향)

  • Oh, Seok Jin;Kim, Hyun Jung;Kwon, Hyeong Kyu;Yang, Han-Soeb;Kim, Seok Yoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.2
    • /
    • pp.92-101
    • /
    • 2015
  • We investigated cause of non-outbreak of Cochlodinium polykrikoides blooms in the western coast of Jaran Bay during summer, 2013, based on the species competition among C. polykrikoides and Skeletonema sp. using a mathematical model. As a result of the model simulation where the nutrient conditions in Jaran Bay was applied during summer, the cell density of Skeletonema sp. was higher than that of C. polykrikoides. In the sensitivity analyses by doubling and halving the parameters, any parameter had little effect on the cell density of C. polykrikoides. The cell density of Skeletonema sp. was significantly affected by changes in the parameter values. These results indicated that the growth of C. polykrikoides could be unaffected by rapidly changing environments. However, the growth of Skeletonema sp. may have been promoted by the changing nutrient supply of coast environments. Therefore, C. polykrikoides might have been suppressed by diatom blooms, such as Skeletonema sp., in changing nutrient supply condition of Jaran Bay.

Effect of Cochlodinium polykrikoides Bloom on the Quality Changes of Fish during Storage in Seawater (Cochlodinium polykrikoides 적조에 노출하여 치사시킨 어류의 해수저장 중 선도변화)

  • 김지회;이희정;김태진;유현덕;김풍호;박정흠
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.4
    • /
    • pp.193-200
    • /
    • 2002
  • Three species of fish such as yellow tail (Seriola quinqueradiata), bastard halibut (Paralichthys olivaceus) and black rockfish (Sebastes schlegeli) were exposed to the dinoflagellate, Cochlodinium polykrikoides, and quality changes of fish after death were investigated during the extended storage. The volatile basic nitrogen (VBN) and aerobic plate counts (APC) were determined in the muscles of fish, arid organoleptic change was evaluated in the kills, skins and muscles. APC in all the fish species did not change in 6 hours of storage, but increased gradually thereafter. VBN contents in the muscles continuously increased throughout the storage of fish. Slightly higher levels of APC and VBN were observed in the tested fish than control fish, which had been exposed to air until died and stored in seawater without treating C. polykrikoides. After 12 hours of storage, APC and VBN contents in the muscles did not exceed the initial spoilage limit, 10$^{5}$ CFU/g fur APC and 30 mg/100 g for VBN, in all of the fish including control fish. Organoleptic change in fish treated with C. polykrikoides did not greatly differ from the control fish. After 8 hours of storage, distinctive deterioration of muscle was detected organoleptically in the treated fish and the control fish. The compiled result indicated that moribund fish exposed to C. polykrikoides bloom should be handled properly in 6 hours of storage after death of fish.

Short -term changes of microbial communities after control of Cochlodinium polykrikoides by yellow clay and chemical compound dosing in microcosm experiments (황토와 화학물질 살포에 의한 적조생물Cochlodinium polykrikoides 제어에 따른 미소생물그룹의 단주기변화)

  • Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2971-2977
    • /
    • 2015
  • This study aimed to understand the changes in microbial community after algicide dosing to control the fish-killing dinoflagellate Cochlodinium polykrikoides in 10L microcosm. Based on our microcosm experiments, the algicidal activity for C. polykrikoides of yellow clay at the concentrations of 4g and 10g per 10 L was < 20%. At $0.8{\mu}M$ concentration of thiazolidinedione(TD49), the population of C. polykrikoides was controlled to be > 85%. In microbial community, a significant increase in heterotrophic bacterial (HB) abundance was observed at day 1 in the TD49 and yellow clay treatments including control. The HB remained high for 2 days and then gradually decreased. In contrast, the abundance of heterotrophic nanoflagellates (HNFs) increased significantly on days 3 and 5 in the TD49 treatments, indicating that the decline in HB was probably a result of predation by the high density of HNFs. In addition, fluctuations in the aloricate ciliate Uronema sp., which feed on bacteria, was clearly correlated with fluctuations in HB abundance, with a lag period of 1-3 days. Therefore, the short-term responses of the HNF and Uronema sp. may have been a result of the rapidly increasing of HB abundance, which is related to degradation of the dense C. polykrikoides bloom, particularly in the TD49 treatment. In addition, large aloricate ciliate Euplotes sp. was significantly increased after reproduction of HNFs and Uronema sp. Consequently, the algicide TD49 had positive effect on the microbial communities, which indicates that the microbial loop was temporarily enhanced in the microcosm by energy flow from HB through HNFs to ciliate.

Non-Outbreak Cause of Cochlodinium Bloom in the Western Coast of Jaran Bay in Summer, 2013 : On the Basis of Nutrient Data (2013년 하계 자란만 서부 연안의 Cochlodinium 적조 미발생 원인 : 영양염 자료를 중심으로)

  • Kwon, Hyeong-Kyu;Kim, Hyun-Jung;Yang, Han-Seob;Oh, Seok-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.372-381
    • /
    • 2014
  • We investigated cause of non-outbreak of Cochlodinium polykrikoides blooms in the western coast of Jaran Bay during Summer, 2013, by combining chemical field data and physiological data of C. polykrikoides, which had been already published. The predominant species were mainly diatoms, and dominant species was Cerataulina pelagica, Chaetoceros spp., Navicula spp. and Nitzschia spp.. In case of dissolved inorganic nutrients in the western coast of Jaran Bay, dissolved inorganic phosphorus (DIP) was similar to that in previous outbreak period of C. polykrikoides blooms, but dissolved inorganic nitrogen (DIN) was lower. C. polykrikoides might be disadvantageous in competition with diatom species because half-saturation constants (Ks) of C. polykrikoides for inorganic nutrients was lower than those of diatoms. Also, the western coast of Jaran Bay, where DIN concentration is relatively low, was an unfavorable environment for growth of C. polykrikoides characterized by nitrogen dependence. Therefore, C. polykrikoides which have the disadvantageous position for competition of inorganic nutrient might have been suppressed by diatom blooms under environment of low nutrient in the western coast of Jaran Bay.

The Importance of Dissolved Organic Nutrients on the Interspecific Competition between the Harmful Dinoflagellate Cochlodinium polykrikoides and the Diatom Skeletonema sp. (유해 와편모조류 Cochlodinium polykrikoides와 규조류 Skeletonema sp.의 종간경쟁에서 용존 유기 영양염의 중요성)

  • Kwon, Hyeong Kyu;Kim, Hyun Jung;Yang, Han-Soeb;Oh, Seok Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.232-242
    • /
    • 2014
  • We investigated the interspecific competition between the harmful dinoflagellate Cochlodinium polykrikoides and diatom Skeletonema sp. based on the utilization and uptake of dissolved organic nutrients. C. polykrikoides and S. costatum were able to grow using dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) as well as dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP). This result indicates that the utilization of dissolved organic nutrients may play a role in surviving strategy in the DIN or DIP-limited environments. The half-saturation constants (Ks) of urea and glycerophosphate (glycero-P) calculated from uptake kinetics experiment of C. polykrikoides was lower than those of Skeletonema sp. This result indicates that Skeletonema sp. have higher affinity for dissolved organic nutrients, such as urea and glycero-P, than C. polykrikoides. Although Skeletonema sp. have higher affinity of dissolved organic nutrients, C. polykrikoides could effectively uptake for urea and glycero-P at sub-saturating nutrient concentrations (${\alpha}$ (${\rho}_{max}/Ks$) of C. polykrikoides was higher than Skeletonema sp.. Therefore, C. polykrikoides by utilization and effectively uptake of dissolved organic nutrients under monoculture may have an advantageous position in the interspecific competition with Skeletonema sp. in the low nutrient environments.

Characteristic of Environmental Factors Related to Outbreak and Decline of Cochlodinium polykrikoides Bloom in the southeast coastal waters of Korea, 2007 (2007년 남해동부해역의 Cochlodinium polykrikoides 적조 발생과 소멸에 미치는 환경 특성)

  • Lim, Weol-Ae;Lee, Young-Sik;Lee, Sam-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.325-332
    • /
    • 2008
  • To characterize the initiation, propagation and termination of Cochlodinium polykrikoides blooms in the southeast coastal waters of Korea, 2007, we have analyzed the data set of phytoplankton composition, physical and chemical water properties, and meterological data. The development of C. polykrikoides bloom in 2007 can be summarized in three steps. The first stage from middle of July to end of August was characterized by an unusually persistent and strong southerly wind. C. polykrikoides blooms established already by the strong wind in the middle of south coastal waters were advected intermittently into the study area. Accordingly, highly variable cell densities of C. polykrikoides were observed. At the second stage a favorable growing conditions for C. polykrikoides was developed, which was directed by changes in wind direction from south to northeast and thus enhanced transportation of offshore waters into inshore (August 8 to 30). C. polykrikoides bloom occurred through typical mechanism and showed high cell density. The last stage was represented by disappearance of C. polykrikoides. Typoon 'Nari' carrying heavy rain brought an unfavorable habitat to C. polykrikoides. Low saline condition formed in coastal water due to typoon effects continuously drove the dominant species to diatoms and flagellates which were prevailing over C. polykrikoides in this circumstances(from the middle of September). These stepwise processes could be the causative mechanism of the extraordinarily persistent C. polykrikoides bloom observed in southeast coastal water of Korea, 2007.