Browse > Article
http://dx.doi.org/10.4490/algae.2017.32.9.10

An advanced tool, droplet digital PCR (ddPCR), for absolute quantification of the red-tide dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae)  

Lee, Hyun-Gwan (Department of Oceanography, Chonnam National University)
Kim, Hye Mi (Department of Oceanography, Chonnam National University)
Min, Juhee (Department of Oceanography, Chonnam National University)
Kim, Keunyong (Department of Oceanography, Chonnam National University)
Park, Myung Gil (Department of Oceanography, Chonnam National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Kim, Kwang Young (Department of Oceanography, Chonnam National University)
Publication Information
ALGAE / v.32, no.3, 2017 , pp. 189-197 More about this Journal
Abstract
To quantify the abundance of the harmful dinoflagellate Cochlodinium polykrikoides in natural seawaters, we developed the innovative procedure using a droplet digital PCR (ddPCR) with C. polykrikoides-specific primers targeting the internal transcription sequence (ITS). The abundance of C. polykrikoides was estimated by the specific copy number of target ITS DNA segments per cell in cultures and natural water samples. The copy number per C. polykrikoides cell as acquired by ddPCR was $157{\pm}16$, which was evaluated against known cell numbers through a simplified protocol preparing DNAs. The abundances of C. polykrikoides in the waters of different locations estimated by ddPCR agreed with the number of cells visually counted under a microscope. This protocol was used to measure the abundance of C. polykrikoides close to and further off the southern coast of Korea in August of 2016 and 2017. The practical application showed that this method can reduce time for analysis and increase accuracy.
Keywords
abundance; Cochlodinium polykrikoides; copy number; ddPCR; dinoflagellate; quantification;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Hong, H. -H., Lee, H. -G., Jo, J., Kim, H. M., Kim, S. -M., Park, J. H., Jeon, C. B., Kang, H. -S., Park, M. G., Park, C. & Kim, K. Y. 2016. The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry. Algae 31:373-378.   DOI
2 Bereiter-Hahn, J. 1990. Behavior of mitochondria in the living cell. Int. Rev. Cytol. 122:1-63.
3 Buchheim, M. A., Keller, A., Koetschan, C., Forster, F., Merget, B. & Wolf, M. 2011. Internal transcribed spacer 2 (nu ITS2 rRNA) sequence-structure phylogenetics: towards an automated reconstruction of the green algal tree of life. PLoS One 6:e16931.   DOI
4 Iwataki, M., Hansen, G., Moestrup, O. & Matsuoka, K. 2010. Ultrastructure of the harmful unarmored dinoflagellate Cochlodinium polykrikoides (Dinophyceae) with reference to the apical groove and flagellar apparatus. J. Eukaryot. Microbiol. 57:308-321.   DOI
5 Jeffrey, S. W. & Vesk, M. 1997. Introduction to marine phytoplankton and their pigment signatures. In Jeffrey, S. W., Mantoura, R. F. C. & Wright, S. W. (Eds.) Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Vol. 10. Monographs on Oceanographic Methodology. UNESCO Publishing, Paris, pp. 37-84.
6 Jeong, H. J., Lee, K., Yoo, Y. D., Kim, J. -M., Kim, T. H., Kim, M., Kim, J. -H. & Kim, K. Y. 2016. Reduction in $CO_2$ uptake rates of red tide dinoflagellates due to mixotrophy. Algae 31:351-362.   DOI
7 Kim, C. -J., Kim, H. -G., Kim, C. -H. & Oh, H. -M. 2007. Life cycle of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides in Korean coastal waters. Harmful Algae 6:104-111.   DOI
8 Kudela, R. M. & Gobler, C. J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71-86.   DOI
9 Lee, S. Y., Jeong, H. J., Seong, K. A., Lim, A. S., Kim, J. H., Lee, K. H., Lee, M. J. & Jang, S. H. 2017. Improved real-time PCR method for quantification of the abundance of all known ribotypes of the ichthyotoxic dinoflagellate Cochlodinium polykrikoides by comparing 4 different preparation methods. Harmful Algae 63:23-31.   DOI
10 Lee, C. -K., Park, T. -G., Park, Y. -T. & Lim, W. -A. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30(Suppl. 1):S3-S14.   DOI
11 Park, B. S., Wang, P., Kim, J. H., Kim, J. -H., Gobler, C. J. & Han, M. -S. 2014. Resolving the intra-specific succession within Cochlodinium polykrikoides populations in southern Korean coastal waters via use of quantitative PCR assays. Harmful Algae 37:133-141.   DOI
12 Marcoval, M. A., Pan, J., Tang, Y. & Gobler, C. J. 2013. The ability of the branchiopod, Artemia salina, to graze upon harmful algal blooms caused by Alexandrium fundyense, Aureococcus anophagefferens, and Cochlodinium polykrikoides. Estuar. Coast. Shelf Sci. 131:235-244.   DOI
13 Matsuoka, K., Iwataki, M. & Kawami, H. 2008. Morphology and taxonomy of chain-forming species of the genus Cochlodinium (Dinophyceae). Harmful Algae 7:261-270.   DOI
14 McKibben, S. M., Watkins-Brandt, K. S., Wood, A. M., Hunter, M., Forster, Z., Hopkins, A., Du, X., Eberhart, B. -T., Peterson, W. T. & White, A. E. 2015. Monitoring Oregon Coastal Harmful Algae: observations and implications of a harmful algal bloom-monitoring project. Harmful Algae 50:32-44.   DOI
15 Park, J., Jeong, H. J., Yoon, E. Y. & Moon, S. J. 2016. Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method. Algae 31:391-401.   DOI
16 Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143.   DOI
17 Sato, N., Terasawa, K., Miyajima, K. & Kabeya, Y. 2003. Organization, developmental dynamics, and evolution of plastid nucleoids. Int. Rev. Cytol. 232:217-262.
18 Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A. & Anderson, D. M. 2010. The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163-172.   DOI
19 Rountos, K. J., Tang, Y. -Z., Cerrato, R. M., Gobler, C. J. & Pikitch, E. K. 2014. Toxicity of the harmful dinoflagellate Cochlodinium polykrikoides to early life stages of three estuarine forage fish. Mar. Ecol. Prog. Ser. 505:81-94.   DOI
20 Sanders, R., Huggett, J. F., Bushell, C. A., Cowen, S., Scott, D. J. & Foy, C. A. 2011. Evaluation of digital PCR for absolute DNA quantification. Anal. Chem. 83:6474-6484.   DOI
21 Scollo, F., Egea, L. A., Gentile, A., La Malfa, S., Dorado, G. & Hernandez, P. 2016. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): comparison of isolation and amplification methodologies. Food Chem. 213:388-394.   DOI
22 Sellner, K. G., Doucette, G. J. & Kirkpatrick, G. J. 2003. Harmful algal blooms: causes, impacts and detection. J. Ind. Microbiol. Biotechnol. 30:383-406.   DOI
23 Shahraki, J., Motallebi, A., Barekati, I., Seydi, E. & Pourahmad, J. 2014. Comparison of cellular and molecular cytotoxic mechanisms of Cochlodinium polykrikoides in isolated trout and rat hepatocytes. Toxicol. Environ. Chem. 96:917-930.   DOI
24 Shahraki, J., Motallebi, A. & Pourahmad, J. 2013. Oxidative mechanisms of fish hepatocyte toxicity by the harmful dinoflagellate Cochlodinium polykrikoides. Mar. Environ. Res. 87-88:52-60.   DOI
25 Ellison, S. L. R., Emslie, K. R. & Kassir, Z. 2011. A standard additions method reduces inhibitor-induced bias in quantitative real-time PCR. Anal. Bioanal. Chem. 401:3221-3227.   DOI
26 Wilson, I. G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63:3741-3751.
27 Cho, E. S., Kim, G. Y., Choi, B. D., Rhodes, L. L., Kim, T. J., Kim, G. H. & Lee, J. D. 2001. A comparative study of the harmful dinoflagellates Cochlodinium polykrikoides and Gyrodinium impudicum using transmission electron microscopy, fatty acid composition, carotenoid content, DNA quantification and gene sequences. Bot. Mar. 44:57-66.
28 Coleman, A. W. & Mai, J. C. 1997. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J. Mol. Evol. 45:168-177.   DOI
29 Coyne, K. J., Handy, S. M., Demir, E., Whereat, E. B., Hutchins, D. A., Portune, K. J., Doblin, M. A. & Cary, S. C. 2005. Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnol. Oceanogr. Methods 3:381-391.   DOI
30 Devonshire, A. S., Honeyborne, I., Gutteridge, A., Whale, A. S., Nixon, G., Wilson, P., Jones, G., McHugh, T. D., Foy, C. A. & Huggett, J. F. 2015. Highly reproducible absolute quantification of Mycobacterium tuberculosis complex by digital PCR. Anal. Chem. 87:3706-3713.   DOI
31 Flekna, G., Schneeweiss, W., Smulders, F. J. M., Wagner, M. & Hein, I. 2007. Real-time PCR method with statistical analysis to compare the potential of DNA isolation methods to remove PCR inhibitors from samples for diagnostic PCR. Mol. Cell. Probes 21:282-287.   DOI