Browse > Article
http://dx.doi.org/10.4490/ALGAE.2006.21.2.253

Characteristics of Organic Substances Produced from Cochlodiniumpolykrikoides (Dinophyceae)  

Kang, Yang-Soon (Marine Harmful Organism Research Team, National Fisheries Research & Development Institute)
Kwon, Jung-No (Research Planning Team, National Fisheries Research & Development Institute)
An, Kyoung-Ho (Marine Harmful Organism Research Team, National Fisheries Research & Development Institute)
Publication Information
ALGAE / v.21, no.2, 2006 , pp. 253-259 More about this Journal
Abstract
Organic substances are released from phytoplankton cells during all phases of growth. The type and amounts of organic substance excreted and the effects of nutrient limitation are often highly species-specific. Dinoflagellate, Cochlodinium polykrikoides grown in batch culture produced an exopolysaccharide. Exopolysaccharide and intracellular polysaccharide concentrations increased as C. polykrikoides cultures progressed from exponential phase, through stationary phase, to declining phase. In the exponential phase, the concentration of exopolysaccharide was relatively low, but in the stationary phase, it showed a rapid increase which seemed to coincide with the depletion of nitrate from the medium. Of the 20 amino acids analyzed, proline dominated in the organic matter of all cultures ranging from 48.2 to 79.9 nmol L–1, and constituting the 20-90% of total amino acids, and followed by histamine varying from 0.7 to 47.5 nmol L–1. Leucine and cysteine were also abundant in the stationary phase. The release rates of exopolysaccharide and intracellualr polysaccharide were higher the end of stationary phase than in the exponential phase. Exopolysaccharide concentration per cell was more than two times higher during the end of stationary phase than that in exponential phase. C. polykrikoides produced extracellular polysaccharide at a rate of 47.04 pg cell–1 day–1.
Keywords
amino acids; Cochlodinium polykrikoides; exopolysaccharide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahlgren G., Gustafsson I.B., and Boberg M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28: 37-50   DOI
2 Allan G.G., Lewin J., and Johnson P.G. 1972. Marine polymers: IV. Diatom polysaccharides. Bot. Mar. 15: 102-108   DOI
3 Azam F. and Cho B.C. 1987. Bacterial utilization of organic matter in the sea. In fletcher, M., Gray, T.R.G., nd Jones, T.G.(eds), Ecology of microbial communities. Cambridge Univ. Press Cambridge, SGM 41: 261-281
4 Decho A.W. 1990. Microbial exopolymer secretions in ocean environments: their role(s), in food web and marine processes. Oceanogr. Mar. Biol. Ann. Rev. 28: 73-153
5 Degobbis D., Fonda-Umani S., Franco P., Malej A., Precali R., and Smodlaka N. 1995. Changes in the northern Adriatic ecosystem and the hypertrophic appearance of gelatinous aggregates. Sci. Total Environ. 165: 43-58(Sp. issue)   DOI   ScienceOn
6 Hoagland K.D., Rosowski J.R., Roemer M.R., and Gretz S.C. 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J. Phycol. 29: 537-566   DOI   ScienceOn
7 Jenkinson I. R. 1989. Increases in viscosity may kill fish in some blooms. In:Okaichi, T., Anderson, D. M., Nemoto, T. (Eds.), Red tides: biology, environmental science, and toxicology.Elsevier, New York, 435-438
8 Kang Y. S., Kwon J.N. Shon J.K., Eom K.H., Hong S.J. and Kong J.Y. 2002. Cochlodinium polykrikoides: (Dinophyceae)가 생산 하는 exopolysaccharide: 질산염과 인산염의 농도에 따른 효과. Bull. Nat'l Fish. Res. Dev. Inst. Korea 61: 97-103
9 Kim C.S., Bae H.M., Yun S.J., Cho Y.C., and Kim H.G. 2000. Ichthyotoxicity of a harmful dinoflagellate Cochlodinium polykrikoides: aspects of hematological responses of fish exposed to algal blooms. Kor. J. Fish. Sci. Tech. 3: 111-117
10 Lancelote C. 1984. Extracellular release of small and large molecules by phytoplankton in the Southern bright of the North sea. Estuar. Coastal Shelf Sci. 18: 65-77   DOI   ScienceOn
11 Lee J.S. 1996. Bioactive components from red tide plankton, Cochlodinium polykrikoides. J. Kor. Fish. Soc. 29: 165-173 (in Korean)
12 Mague T.H., Friberg E., Hughes D.J. and Morris I. 1980. Extracellular release of carbon by marine phytoplankton: a physiological approach. Limnol. Oceanogr. 25: 262-279   DOI
13 Myklestad S.L. 1995. Release of extracellular products by phytoplankton with special emphasis on polysaccharides.The Science of the Environment 165: 155-164
14 Smith D.J. and Underwood G.J.C. 1998. Exopolymer production by intertidal epipelic diatoms. Limnol. Oceanogr. 43: 1578-1591   DOI
15 Myklestad S.L., Holm-Hansen O., Varum K.L., and Volcani B.E. 1989. Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. J.plankton research 11: 763-773   DOI
16 Poulet S.A., and Martin-Jezequel V. 1983, Relationship between dissolved free amino acids chemical composition and growth of the marine diatom Chaetoceros debile. Mar. Biol.17: 93-100
17 Sharp J.H. 1974. Improved analysis for particulate organic carbon and nitrogen from sea water. Limnol Oceanogr. 19:984-979   DOI
18 Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., and Smith F. 1956. Colorimetric methods for determination of sugars and related substances. Anal. Chem. 28: 350-356   DOI
19 Fogg G.E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Marina, 26:3-14.   DOI
20 Fryxell G.A., Glould Jr. R.W., and Watkins T.P. 1984. Gelatinous colonies of the diatom Thalassiosira in the Gulf Stream warm core rings, including T. fragilia sp. nov. Br. Phycol. J. 19: 141-156   DOI
21 Hellebust J.A. 1974. Extracellular products. In: N.D. Steward (ed.), Algal Physiology and Biochemistry. Univ. of California Press, Berkeley. pp. 838-863
22 Herbert D., Phipps P.J., and Strange R.E. 1971. Chemical analysis of microbial cells. In: Norris, J. R. D. W. Ribbons (eds.), Methods in Microbiology, Vol. 5B Academic Press,London. pp. 209-344
23 Telek G. and Marshall N. 1974. Using a CHN analyzer to reduce carbonate interference in particulate organic carbon analysis. Mar. Biol. 24: 219-221   DOI
24 Eberlein K., Leal M.T., Hammer K.D., and Nickel W. 1985. Dissolved organic substances during a Phaeocystis pouchetii bloom in the German Bight, (North Sea). Mar. Biol. 89: 311-316   DOI
25 Underwood G.J.C. and Smith D. J. 1998. Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll a. Microb. Ecol. 35: 116-12   DOI
26 Wakeham S., Lee C., Farrington J., and Gagosian R. 1984. Biogeochemistry of particulate organic matter in the oceans. Deep-Sea Res. 31: 509-528   DOI   ScienceOn
27 Billen G. and Fontigny A. 1987. Dynamics of a Phaeocystisdominated spring bloom in Belgian coastal waters: II. Bacterioplankton dynamics. Mar. Ecol. Prog. Ser. 37: 249-257   DOI
28 Lee C. and Cronin C. 1984. Particulate amino acids in the sea: effects of primary productivity and biological decomposition. J. Mar. Res. 42: 1075-1097   DOI   ScienceOn
29 Leppard G.G. 1995. The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems. Sci. Total Environ. 165: 103-131 (Sp. Issue)   DOI   ScienceOn
30 Liu H. and Buskey E.J. 2000. The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing and behavior of protozoa. Limnol. Oceanogr. 45: 1187-1191   DOI
31 Lu M. and Stephens G.C. 1984. Demonstration of net influx of free amino acids in Phaeodactylum tricornutum using high performance liquid chromatography. J. Phycol. 20: 584-589   DOI
32 Hellebust J.A. 1965. Excreation of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192-206   DOI
33 Staats N., Stal L.J., and Mur L.R. 2000. Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J. Exp. Mar. Bio. Ecol. 249: 13-27   DOI   ScienceOn
34 Azam F., Field J.G., Gray J.S., Meyer-Reil L.A. and Thingstad F. 1983. The ecological role of water-column microbesmin the sea. Mar. Ecol. Prog. Ser. 10: 257-263   DOI
35 Smith D.J. and Underwood G.J.C. 2000. The production of extracellular carbohydrates by estuarine benthic diatoms: The effects of growth phase and light and dark treatment. J.Phycol. 30: 321-333
36 Staats N., Winde B.D., Stal L.J. and Mur L.R. 1999. Isolation and characterization of extracellular polysaccharides from epipelic diatoms Cylindrotheca clostrium and Navicular salinarum. Eur. J. Phycol. 34: 161-169   DOI   ScienceOn
37 Stein J.J. 1973. Handbook of phycological methods: Culture methods and growth measurements, Cambridge Univ.press 27-51
38 Tago Y. and Aida K. 1977. Extracellular mucopolysaccharide closely related to bacterial floc formation. Appl. Environ,Microbiol. 34: 308-314
39 Stachowitsch M., Fanuko N., and Richter N. 1990. Mucous aggregates in the Adriatic Sea: an overview of stages and occurrence. P.S.Z.N. Mar. Ecol. 11: 327-350   DOI
40 Metaxatos A., Panagiotopoulosb C., and Ignatiadesa L. 2003. onosaccharide and amino acid composition of mucilage material produced from a mixture of four phytoplanktonic taxa, J. Exp. Mar. Biol. Ecol. 294: 203-217   DOI   ScienceOn
41 Myklestad S.L. 1974. Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. J. Exp. Mar. Biol. Ecol. 29: 161-179   DOI   ScienceOn
42 Admiraal W., Peletier H., and Laane R.W.P.M. 1986. Nitrogen Mmetabolism of marine planktonic diatoms; excretion,assimilation and cellular pools of free amino acids in seven species with different cell size. J. Exp. Mar. Biol. Ecol. 98:241-263   DOI   ScienceOn