• Title/Summary/Keyword: Cochlear electrical model

Search Result 19, Processing Time 0.027 seconds

Evaluation of Stimulus Strategy for Cochlear Implant Using Neurogram (Neurogram을 이용한 인공와우 자극기법 평가 연구)

  • Yang, Hyejin;Woo, Jihwan
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.47-54
    • /
    • 2013
  • Electrical stimulation is delivered to auditory nerve (AN) through the electrodes in cochlear implant system. Neurogram is a spectrogram that includes information of neural response to electrical stimulation. We hypothesized that the similarity between a neurogram and an input-sound spectrogram could show how well a cochlear implant system works. In this study, we evaluated electrical stimulus configuration of CIS strategy using the computational model. The computational model includes stochastic property and anatomical features of cat auditory nerve fiber. To evaluate similarity between a neurogram and an input-sound spectrogram, we calculated Structural Similarity Index (SSIM). The results show that the dynamic range and the stimulation rate per channel influenced SSIM. Finally, we suggested the optimal configuration within the given stimulus CIS. We expect that the results and the evaluating procedure could be employed to improve the performance of a cochlear implant system.

Development of 3D cochlear model to evaluate ECAP (ECAP 평가를 위한 3차원 달팽이관 모델 개발)

  • Kang, Soojin;Woo, Jihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.287-293
    • /
    • 2013
  • Cochlear implant (CI) is an auditory prosthesis that delivers electrical stimulation via inserted electrodes into a cochlea. To evaluate CI performance, it is important to understand how auditory nerves are responded to electrical stimulations. In clinic, electrically evoked compound action potential (ECAP) is measured. In this study, we developed 3D finite element (FE) cochlear model to simulate ECAP in response to electrical stimulation. The model prododuced ECAP similar to that measured in animal experiments and clinics. This 3D FE cochlear model could be used in electrical stimulus method study to improve CI by analyzing neural responses to electrical stimulations.

Design of the Speech Signal Processores for Cochlear Prosthesis (청각 보철용 음성신호 처리기의 설계)

  • Park, Sang-Hui;Choi, Doo-Il;Beack, Seung-Wha
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.285-294
    • /
    • 1991
  • Two types of the speech signal processores (SSP) for the cochlear a prosthesis are designed. One is designed using the cochlear model and the other is designed using the information (formant, pitch, intensity) extraction method. For these, some cochlear model and acoustic information extraction method are proposed. The result shows the SSP of the cochlear model type contain more acoustic cues than that of information extraction type. On the other hand, stimulus signal is clear and algorithm is simple in the SSP of the information ex traction type.

  • PDF

Application of sinusoidal model to perception of electrical hearing in cochlear implants (인공와우 전기 청각 인지에 대한 정현파 모델 적용에 관한 연구)

  • Lee, Sungmin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.52-57
    • /
    • 2022
  • Speech consists of the sum of complex sine-waves. This study investigated the perception of electrical hearing by applying the sinusoidal model to cochlear implant simulation. Fourteen adults with normal hearing participated in this study. The sentence recognition tests were implemented using the sentence lists processed by the sinusoidal model which extracts 2, 4, 6, 8 sine-wave components and sentence lists processed by the same sinusoidal model along with cochlear implant simulation (8 channel vocoders). The results showed lower speech recognition for the sentence lists processed by the sinusoidal model and cochlear implant simulation compared to those by the sinusoidal model alone. Notably, the lower the number of sine-wave components (2), the larger the difference was. This study provides the perceptual pattern of sine-wave speech for electrical hearing by cochlear implant listeners, and basic data for development of speech processing algorithms in cochlear implants.

A Design of the Speech Signal Processor of Cochlear Prosthesis for the Sensory Deaf (청각 장애자를 위한 청각 보철용 음성신호 처리기의 설계)

  • Choi, Doo-Il;Kim, Dong-Hyuk;Park, Sang-Hui;Beack, Seung-Hwa
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.39-42
    • /
    • 1991
  • Two types of speech signal processores (SSP) for cochlea prosthesis are designed. One is designed using cochlear model and the other is designed using Information (formant, pitch, intensity) extraction method. For these, cochlear model and acoustic information extraction method are proposed. The result shows SSP of cochlear model type contain more acoustic cues than that of information extraction type.

  • PDF

Active Linear Modeling of Cochlear Biomechanics Using Hspice

  • Jarng Soon Suck;Kwon You Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.77-86
    • /
    • 2005
  • This paper shows one and two dimensional active linear modeling of cochlear biomechanics using Hspice. The advantage of the Hspice modeling is that the cochlear biomechanics may be implemented into an analog Ie chip. This paper explains in detail how to transform the physical cochlear biomechanics to the electrical circuit model and how to represent the circuit in Hspice code. There are some circuit design rules to make the Hspice code to be executed properly.

A Study on Pitch Detection using Cochlear Model on Cochannel Speech (청각 모델을 이용한 Cochannel 음성에서의 피치 추출에 관한 연구)

  • Sin, Dae-Gyu;Sin, Jung-In;Lee, Jae-Hyeok;Han, Du-Jin;Park, Sang-Hui
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.6
    • /
    • pp.330-333
    • /
    • 2000
  • In this paper, a new pitch estimation method is proposed using the Robinson cochlear model. This estimation method is useful in noisy environments and especially very efficient under cochannel in which two speaker voices exist at the same time. For the one speaker speech, the pitch can be extracted from just the neurogram of the Robinson cochlear model. In this case, as the estimation is performed in time domain, the exact pitch period can be detected though the pitch period is various. But in noisy and cochannel cases, the neurogram has many spurious peaks, so we use the autocorrelators in the neurogram to manifest the period. It the autocorrelators are used for the all delays, the large amount of calculations is necessary. Due to this defect, we propose that the autocorrelators are used for the part of the delays on which energy is concentrated. First of all, the proposed algorithm is applied to the one speaker speech, and later to the cochannel speech. And then the results are compared with the autocorrelation pitch detection method.

  • PDF

Two-dimensional Model Analysis on Cochlear Basilar Membrane Motion (코클리어 기저막 운동의 2차원 모델 해석)

  • Yu, Seon-Guk;Baek, Seung-Hwa;Park, Sang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.161-166
    • /
    • 1984
  • In this paper, we describe an effective technique for computing the steady-state motion in a two-dimensional cochlear model. With the cochlear fluid assumed incompressible and invisid, the problem reduces to solving an integral equation for a region with yielding boundary. Using the conformal mapping, Jacobian elliptic function and hyperbolic function, a pair of second-order differential equation is derived. What we will show in this paper is that by appropriately transforming integral equation, the same computation can be performed with comparable accuracy in a short time.

  • PDF

Voice Expression using a Cochlear Filter Model

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.20-28
    • /
    • 1996
  • Speech sounds were practically applied to a cochlear filter which was simulated by an electrical transmission line. The amplitude of the basilar membrane displacement was calculated along the length of the cochlea in temporal response. And the envelope of the amplitude according to the length was arranged for each discrete time interval. The resulting time response of the speech sound was then displayed as a color image. Five vowels such as a, e, I, o, u were applied and their results were compared. The whole procedure of the visualization method of the speech sound using the cochlear filter is described in detail. The filter model response to voice is visualized by passing the voice through the cochlear filter model.

  • PDF

Study on Electric Stimulus Pattern in Cochlear Implant Using a Computer Model (신경모델링을 이용한 인공와우 전기자극 패턴 연구)

  • Yang, Hyejin;Woo, Jihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.249-255
    • /
    • 2012
  • A cochlear implant system uses charge-balanced biphasic pulses that are known to reduce tissue damage than monophasic pulses. In this study, we investigated effect of pulse pattern on neural responses using a computer model, based on the Hodgkin-Huxley equation. Electric pulse phase, pulse duration, and phase gap have been systematically varied to characterize auditory nerve responses. The results show that neural responses, dynamic range and threshold are represented as a function of stimulus patterns and duration. The results could greatly extend to develop more efficient cochlear implant stimulation.