Active Linear Modeling of Cochlear Biomechanics Using Hspice

  • Jarng Soon Suck (Dept. of Information, Control & Instrumentation, Chosun University) ;
  • Kwon You Jung (Dept. of Information, Control & Instrumentation, Chosun University)
  • 발행 : 2005.09.01

초록

This paper shows one and two dimensional active linear modeling of cochlear biomechanics using Hspice. The advantage of the Hspice modeling is that the cochlear biomechanics may be implemented into an analog Ie chip. This paper explains in detail how to transform the physical cochlear biomechanics to the electrical circuit model and how to represent the circuit in Hspice code. There are some circuit design rules to make the Hspice code to be executed properly.

키워드

참고문헌

  1. von Bekesy G, Experiments in hearing, (Wiley, New York, 1960,)
  2. Kemp D.T., 'Stimulated acoustic emissions from within the human auditory system', J. Neurophysiology, 34, 802-816, 1978
  3. Ashmore J.F., 'A fast motile response in guinea-pig outer hair cells: the molecular basis of the cochlear amplifier' , J. of Physiology (London), 388, 323-347, 1987
  4. Iwasa K.H. and Chadwick R.S., 'Elasticity and active force generation of cochlear outer hair cells' , J. Acoust, Soc. Am,, 92 (6), 3169-3173, 1992 https://doi.org/10.1121/1.404194
  5. Dallos P., 'Cochlear neurobiology' , The cochlea, Edited by P, Dallos, A.N. Popper, and R.R. Fay, New York, Springer, 186-257, 1996
  6. Sellick P.M., Patuzzi R., Johnstone B.M., 'Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique', J. Acoust. Soc. Am., 72, 131-141, 1982 https://doi.org/10.1121/1.387996
  7. Khanna S.M., Leonard D.G.B., 'Basilar membrane tuning in the cat cochlea' , Science, 215, 305-306, 1982 https://doi.org/10.1126/science.7053580
  8. Narayan S.S., 'Temchin A.N., Recio A., and Ruggero M.A., Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae' , Science, 282, 1882-1884, 1998 https://doi.org/10.1126/science.282.5395.1882
  9. Pickles J.O., An introduction to the physiology of hearing, (Academic Press, London and New York, 1982.)
  10. Allen J.B., 'Nonlinear cochlear signal processing' , in Jahn, Anthony F. and Santos-Sacchi, Joseph, Eds. Physiology of the Ear, Second Edition, Singular Thompson, chapter 19, 393-442, 2001
  11. Rhode W.S., 'Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique', J. Acoust, Soc. Am., 49, 1218-1231, 1971 https://doi.org/10.1121/1.1912485
  12. Neely S.T., Kim D.O., 'A model for active elements in cochlear biomechanics', J. Acoust, Soc. Am., 79, 1472-1480, 1986 https://doi.org/10.1121/1.393674
  13. Chadwick R.S., Compression, gain, and nonlinear distortion in an active cochlear model with subpartitions', Proc. Natl. Acad. Sci. USA, 95, 14594-14599, 1998
  14. Neely S.T., Gorga M.P. and Dorn P.A., 'Growth of distortion-product otoacoustic emissions in a nonlinear, active model of cochlear mechanics', Biophysics of the cochlea, ed By A.W.Gummer, World Scientific, 531-538, 2003
  15. Hspice User' s Guide, 2002
  16. Evans E.F., Wilson J.P., Psychophysics and physiology of hearing, (Academic Press, London and New York), 5-54, 1977
  17. Wegel R.L. and Lane C.E., The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear', Physical Review, 23, 266-285, 1924 https://doi.org/10.1103/PhysRev.23.266
  18. Schroeder M.R., 'An integrable model for the basilar membrane', J. Acoust. Soc. Am. 53 (1), 429-434, 1973 https://doi.org/10.1121/1.1913339
  19. Zwicker E., 'A hardware cochlear nonlinear preprocessing model with active feedback', .J. Acoust. Soc. Am., 80 (1), 146-153, 1986 https://doi.org/10.1121/1.394175
  20. Jarng S.S., 'Electrical transmission line modeling of the cochlear basilar membrane' J. of Korea Soc. of Med. and Bio. Eng., 14 (2), 125-136, 1993
  21. Usher M.J., 'Sensors and transducers', Macmillan, ISBN 0-333-38709-0, 1-20, 1985
  22. Alexander C.K and Sadiku M.N.O, Fundamentals of Electric Circuits, (McGRAW-HILL Korea), 422-426, 2001