• Title/Summary/Keyword: Cobalt-Chromium

Search Result 102, Processing Time 0.032 seconds

The Analysis of Proximate Composition, Minerals and Amino Acid Content of Red Alga Pyropia dentata by Cultivation Sites

  • Jung, Sang-Mok;Kang, Seul-Gi;Kim, Kwang-Tae;Lee, Han-Joo;Kim, A-Reum;Shin, Hyun-Woung
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the proximate composition of Pyropia dentata was compared by the analysis of minerals and amino acids that were produced at Seocheon, Chungcheongnam-do and at Wando and Jangheung, Jeollanam-do. Moisture, ash and crude proteins were analyzed using the AOAC method, and crude lipid was analyzed using the Soxhlet method, and inorganic analysis was performed using ICP-OES. Amino acid was used for the amino acid analyzer. The proximate composition analysis, moisture content, maximum values were displayed in Wando while the maximum content of ash appeared at Jangheung's Pyropia. Crude proteins was appeared at Seocheon's Pyropia and the maximum amount of crude lipid, carbohydrate was appeared in Wando's Pyropia. Inorganic analysis, calcium, potassium, magnesium, sodium, phosphorus, cobalt, chromium, copper, iron, manganese, nickel, zinc were analyzed from the Seocheon's Pyropia, however, cobalt, chromium, and nickel was not detected in Wando's Pyropia. For amino acid analysis, a total of 17 amino acids were detected: leucine, valine, aspartic acid, glutamic acid, and the amount of alanine accounted for about 57 % of total amino acids(26.1-28.7 %). The proximate composition, minerals, and amino acid of Pyropia dentata were different depending on the coastal ecological habitats.

Dental Co-Cr alloys fabricated by selective laser melting: A review article (선택적 레이저 용융 방법으로 제작한 치과용 코발트 크롬 합금에 대한 문헌고찰)

  • Kang, Hyeon-Goo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.248-260
    • /
    • 2021
  • Cobalt-chromium alloys are used to fabricate various dental prostheses, and have advantages of low cost and excellent mechanical properties compared to other alloys. Recently, selective laser melting, which is an additive manufacturing method, has been used to overcome the disadvantages of the conventional fabrication method. A local rapid heating and cooling process of selective laser melting induces fine microstructures, grain refinement, and reduction of porosities of the alloys. Therefore, it can improve mechanical properties compared to the alloys fabricated by the conventional method. On the other hand, layering process and rapid heating and cooling cause accumulation of a large amount of residual stresses that can adversely affect the mechanical properties. A heat treatment for removing residual stresses through recovery and recrystallization process caused complicated changes in mechanical properties induced by phase transformation, precipitate and homogenization of the microstructures. The purpose of this review was to compare the manufacturing methods of Co-Cr alloys and to investigate the characteristics of Co-Cr alloys fabricated by selective laser melting.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

Observation of machining and polishing according to the dental barrel polishing time (치과용 바렐연마의 시간에 따른 가공도 및 연마도 관찰)

  • Hyeon-jeong Ko;Sung-min Choi
    • Journal of Technologic Dentistry
    • /
    • v.45 no.4
    • /
    • pp.87-94
    • /
    • 2023
  • Purpose: This study aimed to observed changes in the shape of dental barrels based on application time. Machinability measures the angle of alloy specimens. Polishing performance measures the surface roughness of alloy specimens. Methods: The dental barrel polishing equipment used in this study was a Snow Barrel (DK Mungyo). Three types of cobalt-chromium alloys for partial dentures were used as specimens (BC CAST R [BP]; Bukwang, Vera PDI [VP]; Aalbadent, and GM 800+ [GP]; Dentaurum). Specimens were prepared in the form of plates (10 mmx10 mmx2 mm). Dental barrel polishing was performed at 450 rpm for 60 minutes with intervals of 5 minutes. The processing angle was measured using a microscope (SZ61; Olympus). Results: For the angle measurement, the VPC specimen was measured at 78.64°, 36.00° for the VP60 specimen, 79.57° for the BP control (BPC) specimen, 28.07° for the BP60 specimen, 75.01° for the GPC specimen, and 39.92° for the GP60 specimen. For the surface roughness measurements, the average surface roughness of the VPC and VP15 specimens were 1.09 ㎛ and 0.26 ㎛, respectively. The average surface roughness of the BPC and BP20 specimens were 1.77 ㎛ and 0.29 ㎛, respectively. The average surface roughness of the GPC and GP15 specimens were 1.08 ㎛ and 0.27 ㎛. Conclusion: The results were excellent after about 20 minutes of dental barrel polishing conditions presented in this study.

Species characterization of animal by muscle composition analysis III. The contents of minerals in muscle from various species (근육조성에 따른 축종특이성 구명 III. 축종별 근육중 무기물 함량)

  • Lee, Myoung-heon;Kim, Sang-keun
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.501-512
    • /
    • 1999
  • We analyzed the contents of 12 types of minerals such as calcium in muscle from various species. Thereafter we observed changes of the concentrations according to age, part and sex in major domestic animals. The concentrations of calcium, iron, sodium, potassium, magnesium and zinc were high respectively whilst the content of cobalt, chromium, copper, manganese, molybdenum and nickel were low respectively in the muscle. The concentration of calcium was high in duck and dog but low in pig and horse. Also high level of sodium content was detected in dog and the content of potassium, iron showed high level in horse compared with the content in other animals. In 6 types of microminerals as cobalt, the level of muscle were no more than 1 ppm showing very low content in all animal, but $2.99{\pm}0.85$ppm of copper in duck was an exceptional case. According to the age some species showed small range of variation centering on macrominerals and there was no remarkable change in microminerals. Distribution of minerals was different according to the part and the variation was very diverse compared with other factors such as age and sex. Additionally, the content of minerals in muscle was higher in female than in male chicken and duck. In conclusion, the difference of the content of minerals according to the species was mainly focused on macrominerals.

  • PDF

Plating Solution Composition Control of Tin-Cobalt Alloy Electroplating Process (Tin-Cobalt 합금 도금공정에서 도금물성 향상을 위한 최적 용액조성 디자인)

  • Lee, Seung-Bum;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • The alternate plating method was suggested by a tin-cobalt alloy plating process which has excellent mechanical characteristics and also favorable to environment. Tin-cobalt alloy plating has many advantages such as nontoxicity, variable color-tone, and no post-treatment process. In this study, the plating conditions such as temperature, pH, current density, plating time, and amount of additive (glycine) were determined in the tin-cobalt alloy plating process through Hull-cell test and surface analysis. As the result of Hull-cell analysis, brightness became superior as the amount of glycine increased. It was found that the optimum alloy ratio was 0.03 M of $SnCl_{2}{\cdot}2H_{2}O$ and 0.05 M of $CoSO_{4}{\cdot}7H_{2}O$ at $50^{\circ}C$, pH 8.5, and $0.5A/dm^2$. The optimum amount of additive was 15 g/L of glycine and 0.1 g/L of organic acid. Then, the solution including glycine was recommended as an optimum plating solution for a chromium plating process.

A Study on the Variation of Tensile Strength and Hardness According to the Frequency of Reuse with Chrome-Cobalt Alloy Widely used in the Production of Partial Denture (국부의치 제작에 사용되는 Chrome Cobalt Alloy의 재주조 횟수에 따른 인장강도 및 경도 변화에 대한 실험적 연구)

  • Chung, Kyung-Pung
    • Journal of Technologic Dentistry
    • /
    • v.18 no.1
    • /
    • pp.15-25
    • /
    • 1996
  • This study is to measure and compare the hardness and tensile strength of each time after we recast seven times continually only with and metal alloy Chromium-Cobalt alloy used in the production of partial denture frame work. The result of the experiment were as follow; 1) The result of the hardness measurement The result of the first casting was $490.48{\pm}38.38$ and that of the second recasting was $455.18{\pm}35.61$ and form the third recasting. the result were $518.38{\pm}37.68$ and over. The change of the hardness difference between each recasting was as follow; The hardness difference between the first casting and the second recasting was $35.25{\pm}31.93$ and that between the second recasting and the third recasting was $63.20{\pm}54.02$. There was a statistically significant difference(P<0.01) in the above hardness, however, there was little difference on the whole. And after the third recasting, the hardness grew high a little bit. That is why low-melting metals such as Cr, Mn, Cu of alloy ingredient was evaporated or there was an effect of changes in metal crystal structure, I suppose. 2) The result of the tensile strength measurement. There was a statistically significant difference(P<0.01) between the first casting and the second, the fourth recasting, however. there was little difference in general.

  • PDF

A Study on the Content Variation of Metals in Welding Fumes (용접흄 충 금속함량 변화에 관한 연구)

  • 윤충식;박동욱;박두용
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

Study on Comparison of the Amount of Trace Metals in Edible Viscera (시판한우 부산물 중 미량금속 함량의 비교조사)

  • 엄애선;장정옥;고영수
    • Korean journal of food and cookery science
    • /
    • v.9 no.3
    • /
    • pp.195-197
    • /
    • 1993
  • This study investigated the contamination of trace metals on edible visceras : tongue, intestine, lung, testis, gira, blood, liver, stomach, and kidney. The edible visceras were selected at random from ten markets in Seoul. The edible visceras underwent freeze drying prior to analysis. The contents of arsenic, cadmium, cobalt, chromium, copper, magnases, molybdenum, lead, and zinc were detected by ICP(Inductively Coupled Plasma Spectrophotometry). The results showed that the levels of trace metals in all the samples fall within the tolerance limit and cadmium in lung tended to be high(>0.1 ppm). Therefore, we may study and investigate continuously on the food contamination of heavy metals for the public health.

  • PDF

STUDIES IN FIBRE DIGESTION AND PASSAGE RATE OF LIQUID AND SOLID IN CATTLE AND BUFFALOES

  • Abdullah, N.;Ho, Y.W.;Mahyuddin, M.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.137-141
    • /
    • 1991
  • Rumen liquor characteristics and disappearance rate of dry matter were studied in Kedah-Kelantan cattle and swamp buffaloes fed grass of rice straw-based diet. Cobalt-EDTA and chromium mordented fibres prepared from the faecal material were used to determine the liquid and solid particles movement in both animal species fed with rice straw. Swamp buffaloes showed a more intense rumen fermentation activity than Kedah-Kelantan cattle when both species were fed straw-based diet. The buffaloes also demonstrated faster rates of grass and straw degradation in situ. The fluid outflow rate from the rumen of buffalo ($1.06{\pm}0.19l/h$) was observed to be slower than that of cattle ($1.55{\pm}0.01l/h$). No significant differences between cattle and buffaloes were observed in rumen fluid volume and passage rate of small particles from the rumen.