• Title/Summary/Keyword: Coating solution

Search Result 1,322, Processing Time 0.025 seconds

Development of a Coating Machine for Making Automotive Seat Covers

  • Park, Hong-Seok;Dang, Xuan-Phuong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.267-272
    • /
    • 2017
  • Automotive seat covers with olefin film imported from foreign companies exhibit some problems such as low peeling strength and high burning rate. The traditional manufacturing process requires gas flame or direct heating for the laminating step. This paper introduces an alternative solution that replaces the olefin film and flame lamination method in making automotive seat covers or interior fabrics. We adopt a new manufacturing concept that applies a water-based resin coating to develop a coating system. The coating machine was successfully developed and tested. Results are intended to contribute to improving the quality and productivity of automotive seat cover production.

Effect on the Adhesion of Ice Slurry by the Characteristic of Cooling Surface (냉각면 성상이 빙부착에 미치는 영향)

  • Seung Hyun;Hong Hi Ki;Kang Chae Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • In the process of ice-slurry making, ice adhesion on cooling wall or in narrow flow Path disturbs continuous ice formation. In this study, the effect on the ice adhesion to cooling surface by some freezing experiments was investigated, quantitatively. Three types of solutions were frozen in various coating vessels with stirring. In the experiment, the ice adhesion between cooling wall and Ice-slurry was evaluated by measuring stirring power. From the result, the stirring power of slurry mixture in PTFE-coating vessel was smaller than those in PE-coating, PFA-coating and bare SUS vessel. Especially, in EG H PG 1.S/ HD 1.5 mass$\%$ solution, the stirring power in the PE-coating vessel was smaller than that in the PFA-coating or SUS vessel.

A Numerical Study on Combined Solution and Evaporation during Spin Coating Process (Wafer Spin Coating 공정에서 증발과 용액이 박막 형성에 미치는 영향에 관한 연구)

  • 노영미;임익태;김광선
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.25-29
    • /
    • 2003
  • The fluid flow, mass transfer, heat transfer and film thickness variation during the spin coating process are numerically studied. The model is said to be I-dimensional because radial variations in film thickness, concentration and temperature are ignored. The finite difference method is employed to solve the equations that are simplified using the similarity transformation. In early time, the film thinning is due to the radial convective outflow. However that slows during the first seconds of spinning so the film thinning due to evaporation of solvent becomes sole. The time varing film thickness is analyzed according to the wafer spin speed, the various solvent fraction in the coating liquid, and the various solvent vapor fraction in the bulk of the overlying gas during the spin coating is estimated.

  • PDF

A study on the corrosion resistance of the SB410 steel sheet using teflon(PTFE) synthetic coating (Teflon(PTFE) Synthetic Coating을 이용한 SB410 강판의 내식성 향상 연구)

  • Han, Su-Min;Yu, Geun-U;Gwon, Jae-Beom;Kim, Jun-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.164-165
    • /
    • 2015
  • 보일러 및 압력 용기용 강판으로 사용되는 SB410은 고 항복 강도 및 좋은 용접성의 특성을 가진 재질로서 주로 고압력, 내열성 및 내식성이 필요한 석유플랜트, 액화물 저장 탱크, 화력 발전 보일러 등의 제조에 주로 사용되어지는 탄소 강재이다. 그러나, 최근에는 조선소, 해양 플랜트, 석유화학 플랜트 등 사용환경에 따른 관련 분야에서의 내식성 요구치가 높아지고 있다. 이와 관련하여 현재 보편적으로 사용되어지는 Marin paint coating을 적용한 SB410 강재의 경우에도 사용환경의 가혹화가 증가됨에 따라 요구되는 내식성에 비하여 불량 현상이 증가하는 추세이며 해당 분야에서 본 재질의 표면처리 개선에 대한 연구 개발이 진행되고 있다. 본 연구에서는 Teflon(PTFE) synthetic coating solution을 이용한 SB410 소재 상의 표면처리 공정 최적화를 수행하였으며, 상기 표면처리에 대한 내식성을 검토하기 위하여 Marin paint coating sample, Teflon(PTFE) synthetic coating sample들에 대한 갈바닉 부식 분석 비교를 통하여 내식성에 대한 비교 검증을 수행하였다.

  • PDF

Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution (3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

Fabrication of Polypyrrole Deposited Poly (vinyl alcohol) Nanofiber Webs by Dip-coating and In situ Polymerization and their Application to Textile Electrode Sensors (Polypyrrole을 증착시킨 Poly(vinyl alcohol) 나노섬유 제조 및 전극용 텍스타일 센서로의 활용 가능성 탐색 -딥 코팅과 현장중합 증착 방식을 중심으로-)

  • Yang, Hyukjoo;Kim, Jaehyun;Lee, Seungsin;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • This study compared dip-coating and in situ polymerization methods for the development of nanofiber-based E-textile using polypyrrole. Nanofiber webs were fabricated by electrospinning an aqueous poly (vinyl alcohol) (PVA) solution. Subsequently, the PVA nanofiber web underwent thermal treatment to improve water resistance. Dip-coating and in situ polymerization methods were used to deposit polypyrrole on the surfaces of the nanofiber web. An FE-SEM analysis was also conducted to examine specimen surface characteristics along with EDS and FT-IR that analyzed the chemical bonding between polypyrrole and specimens. The line resistance and sheet resistance of the treated specimens were measured. Finally, an electrocardiogram (ECG) was measured with textile sensors made of the polypyrrole-deposited PVA nanofiber webs. The polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating dissolved in the dip-coating solution and indicated damage to the nanofibers. However, in the case of in situ polymerization, polypyrrole nanoparticles were deposited on the surface and inter-web structure of the PVA nanofiber web. The resistance measurements indicated that polypyrrole-deposited PVA nanofiber webs fabricated by in situ polymerization with an average sheet resistance of 5.3 k(Ω/□). Polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating showed an average sheet resistance of 57.3 k(Ω/□). Polypyrrole-deposited PVA nanofibers fabricated by in situ polymerization showed a lower line and sheet resistance; in addition, they detected the electrical activity of the heart during ECG measurements. The electrodes made from polypyrrole-deposited PVA nanofiber webs by in situ polymerization showed the best performance for sensing ECG signals among the evaluated specimens.

The Effect of the Surface-modified Carbon Anode on the Electrochemical Performance in Li-ion Battery (리튬이온전지용 탄소 부극재료의 표면개질에 따른 충방전 특성)

  • 김정식;윤휘영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2001
  • This study examined the effects of carbon surface modification by the epoxy resin coating on the electrochemical performance. The mesocarbon microbeads(MCMB) carbon was surface-modified by coating the epoxy resin and its electrochemical properties as an anode was examined. The surface coating of MCMB was carried out by refluxing the MCMB powders in a dilute H2SO4 solution, and mixing them with the epoxy resin-dissolved tetrahydrofuran(THF) solution. Under heat-treatment of the coated MCMB at the temperature over $1000^{\circ}C$, the epoxy-resin coating layer was converted into amorphous phase which was identified by a high resolution transmission electron microscope (HRTEM). The epoxy resin coated MCMB has higher Brunauer-Emmett-Teller (BET) surface area, higher charge/ discharge capacity and better cycleability than a raw MCMB without coating. The reason for the enhancement of cell performance by the epoxy resin coating were considered as the epoxy resin coating layer plays an important role to be a barrier for carbon reacting with electrolyte and to retard the formation of passivation layer.

  • PDF

Influence of CrO3 Sealing Treatment on Properties of Plasma Sprayed Al2O3 Coating (플라즈마 용사 Al2O3 코팅의 특성에 미치는 CrO3 봉공처리의 영향)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Kwon, Jeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.160-167
    • /
    • 2011
  • Plasma sprayed ceramic coatings inherently contain pores and usually also cracks. Post-treatment of the plasma sprayed coatings is a way to close the connected pores and cracks. In this study, post-sealing treatment in plasma sprayed $Al_2O_3$ coatings was employed to overcome the reduction of coating properties. $Al_2O_3$ plasma thermal spray coating was made on aluminum alloys plate, $CrO_3$ post coating and heat treatment at $550^{\circ}C$ was carried out in order for final $Cr_2O_3$ to be saturated through phase transformation. Chromia sealing began at the fine defect in coated microstructure, while larger pores were permeated later. The increase in concentration and treatment frequency of sealing solution resulted in the decrease of porosity of coating layer, while cracks occurred partially after the third treatment. After twice treatment of 10M $CrO_3$ solution, microhardness and breakdown voltage of $Al_2O_3$ coatings were found to increase by ${\fallingdotseq}$ 50% and ${\fallingdotseq}$ 390% respectively than without post-treatment.

Studies on the Synthesis and Characteristic of Silica-PMMA Nano Hybrid Material (실리카-PMMA 나노 하이브리드 코팅액 제조 및 특성에 관한 연구)

  • Son, Dae Hee;Kim, Dae-Sung;Lee, Seung-Ho;Kim, Song Hyuk;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In order to improve the surface hardness of transparent plastic films, an organic-inorganic hybrid coating solution was sunthesized by the sol-gel method. Coating solutions that were prepared colloidal silica (CS), poly methyl methacrylate (PMMA), vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltrimethoxy silane (MAPTMS) was varied with synthesizing parameters such as kinds of organic silane and weight ratio of CS to PMMA. Such coating solution was bar coated on the PET film, cured, and investigated on the chemical and physical properties of coating film. The organic-inorganic hybrid coating solutions have better properties at the pencil hardness and adhesion of coating film than those of an organic material such as PMMA.

Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer (실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가)

  • Kim, Hye Jin;Han, Kyu Sung;Hwang, Kwang Taek;Nahm, Sahn;Kim, Jin Ho
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.631-638
    • /
    • 2019
  • As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.