Studies on the Synthesis and Characteristic of Silica-PMMA Nano Hybrid Material

실리카-PMMA 나노 하이브리드 코팅액 제조 및 특성에 관한 연구

  • Son, Dae Hee (CFC Teramate Co. Ltd.) ;
  • Kim, Dae-Sung (Composite Materials Lab. Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Seung-Ho (Composite Materials Lab. Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Song Hyuk (Department of Industrial & Engineering Chemistry, Pukyong National University) ;
  • Lee, Gun-Dae (Department of Industrial & Engineering Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial & Engineering Chemistry, Pukyong National University)
  • Published : 2012.02.10

Abstract

In order to improve the surface hardness of transparent plastic films, an organic-inorganic hybrid coating solution was sunthesized by the sol-gel method. Coating solutions that were prepared colloidal silica (CS), poly methyl methacrylate (PMMA), vinyltrimethoxysilane (VTMS), and [3-(methacryloyloxy)]propyltrimethoxy silane (MAPTMS) was varied with synthesizing parameters such as kinds of organic silane and weight ratio of CS to PMMA. Such coating solution was bar coated on the PET film, cured, and investigated on the chemical and physical properties of coating film. The organic-inorganic hybrid coating solutions have better properties at the pencil hardness and adhesion of coating film than those of an organic material such as PMMA.

투명한 플라스틱 필름의 표면경도를 향상시키기 위하여 유-무기 하이브리드 코팅 용액을 졸-겔 공정을 이용하여 합성하였다. 무기성분으로 콜로이드 실리카와 유기성분으로 PMMA, 유-무기 성분 간의 결합력을 향상시켜 하이브리드 코팅 층의 특성을 더욱 향상시키기 위하여 실란커플링제로서 vinyl trimethoxy silane (VTMS)과 [3-(metha cryloyloxy)] propyl trimethoxy silane (MAPTMS)를 이용하였고, 알콕시 실란의 종류, 콜로이드 실리카/PMMA의 함량비 등의 반응조건에 따라 콜로이드 실리카/PMMA 졸을 합성하였다. 이러한 졸을 PET 필름에 바코팅시키고, 열경화 시켜 하드코팅막을 제조하여 물리적 화학적 특성을 조사하였다. PMMA에 비해서 하이브리드 형태에서 코팅 막의 연필경도와 기재와의 부착력이 우수하였다.

Keywords

References

  1. M. Menning, P. W. Oliveira, and H. Schmidt, Thin Solid Film, 351, 99 (1999). https://doi.org/10.1016/S0040-6090(99)00335-1
  2. H. Schmidt, J. Non-Crystalline Solids, 178, 302 (1994). https://doi.org/10.1016/0022-3093(94)90299-2
  3. J. M. Urrega, M. C. Matias, V. Lorenzo, and M. U. Orden, Mater. Lett., 45, 293 (2000). https://doi.org/10.1016/S0167-577X(00)00120-8
  4. G. H. Hsiue, Y. L. Liu, and H. H. Liao, J. Polym. Sci. Part A: Polym. Chem., 39, 986 (2001). https://doi.org/10.1002/1099-0518(20010401)39:7<986::AID-POLA1074>3.0.CO;2-W
  5. G. Bonilla, M. Martinez, A. M. Mendoza, and J. M. Widmaier, European Polymer Journal, 42, 2977 (2006). https://doi.org/10.1016/j.eurpolymj.2006.07.011
  6. T. H. Kim, L. W. Jang, D. C. Lee, H. J. Choi, and M. S. John, Macromol. Rapid Commun., 23, 191 (2002). https://doi.org/10.1002/1521-3927(20020201)23:3<191::AID-MARC191>3.0.CO;2-H
  7. C. Agashe, B. R. Marathe, M, G, Takwale, and V. G. Bhide, Thin Solid Films, 164, 261 (1988). https://doi.org/10.1016/0040-6090(88)90146-0
  8. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, Thin Solid Films, 351, 73 (1999). https://doi.org/10.1016/S0040-6090(98)01780-5
  9. J. B. Ahn and S. T. Noh, J. Korean Ind. Eng. Chem., 19, 685 (2008).
  10. C. J. Cornelius and E. Marand, Polymer, 43, 2385 (2002). https://doi.org/10.1016/S0032-3861(01)00803-5
  11. M. Ochi and R. Takahashi, J. Polym. Sci. Part B: Polym. Phys., 39, 1071 (2001). https://doi.org/10.1002/polb.1084
  12. Y.-Y. Yu, C.-Y. Chen, and W.-C. Chen, Polymer, 44, 593 (2003). https://doi.org/10.1016/S0032-3861(02)00824-8