• 제목/요약/키워드: Coating Thickness

검색결과 1,464건 처리시간 0.027초

Multi-coating법으로 제조된 두꺼운 PZT막의 두께 변화에 따른 미세구조 및 전기적 특성 (Microstructures and Electrical Properties of Thick PZT Films with Thickness Variation Fabricated by Multi-coating Method)

  • 박준식;장연태;박효덕;최승철;강성군
    • 한국재료학회지
    • /
    • 제12권3호
    • /
    • pp.211-214
    • /
    • 2002
  • Properties of 52/48 PZT films with various thicknesses for piezoelectric micro-electro mechanical systems (MEMS) devices fabricated by multi-coating method on $Pt(3500{\AA})/Ti(400{\AA})/SiO_2(3000{\AA})/Si$(525$\mu\textrm{m}$) substrates were investigated. PZT films were deposited by spin-coating process at 3500 rpm for 30 sec, followed by pyrolysis at 45$0^{\circ}C$ for 10 min producing the thickness of about 120nm. These processes were repeated 4, 8, 12, 16 and 20 times in order to have various thicknesses, respectively. Finally, they were crystallized at $650^{\circ}C$ for 30 min. All thick PZT films showed dense and homogeneous surface microstructures. Thick PZT films showed crystalline structures of random orientations with increasing thickness. Dielectric constants of thick PZT films were increased with increasing film thickness and reached 800 at 100kHz for 2.3$\mu\textrm{m}$ thick PZT film. $P_r\; and\; E_c$ of 2.3$\mu\textrm{m}$ thick PZT films were about 20$\mu$C/$\textrm{cm}^2$ and 63kV/cm. Depth profile analysis by Auger Electron Spectroscopy (AES) of 4800 $\AA$ thick PZT film showed the formation of the perovskite phase on Pt layer by Pb diffusion behavior. It was considered that Pb-Pt intermediate layer promoted PZT (111) columnar structures.

졸-겔 코팅에 의한 저온형 고체산화물 연료저지용 전해질막의 합성 및 특성 (Synthesis of Electrolyte Films for Low-Temperature Solid Oxide Fuel Cells by Sol-Gel Coating and Their Characteristics)

  • 현상훈;김승구;장운석
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.391-402
    • /
    • 1999
  • Characteristics of composite electrolytes which were prepared by coating a thin film of YSZ (yttria sta-bilized zirconia : (ZrO2)0.92 (Y2O3)0.08) on YDC (yttria doped ceria : Ce0.8Y0.2O1.9) with mixed conductivity have been investigated in order to develop the low-temperature solid oxide fuel cell. The thickness (t) of spin-coated YSZ thin films after the heat-treatment at 600$^{\circ}C$ was increased proportionally to the sol con-centrations (C) while the decrease in its thickness with the spin rate ($\omega$) could be expressed in the e-quation of ln t=9.49-0.53 ln $\omega$(0.99mol//s sol conc.) When the sol concentration and the spin rate being less than 0.99 mol/l and higher than 1000 rpm respectively reliable YSZ/YDC composite electrolytes could be obtained by multi-coating although several micro-cracks were observed in singly coated YSZ film surfaces. The dense YSZ film with a 1$\mu\textrm{m}$ thickness was prepared by coating of 0.99 mol/l YSZ sol five-times at 2000 rpm followed by heat-treatment at 1400$^{\circ}C$ for 2h, The adhesion between YSZ film and YDC substrate was found to be very good. The open circuit voltages of H2/O2 single cell with YSZ/YDC composite electrolytes were 0.79∼0.82 V at 800$^{\circ}C$ and 0.75∼0.77V at 900$^{\circ}C$ The open circuit voltage was inversely proportioned to the thickness ratio of YSZ thin film (1$\mu\textrm{m}$) to YDC substrate(0.28-2.22 mm)

  • PDF

플라즈마 전해 산화 처리한 AZ91D 마그네슘합금 피막의 미세조직 및 부식 특성 (Microstructure and Corrosion Properties of AZ91D Magnesium Alloy treated by Plasma Electrolytic Oxidation)

  • 장시영;김예림;김양도
    • 한국주조공학회지
    • /
    • 제28권1호
    • /
    • pp.20-24
    • /
    • 2008
  • The characteristics, such as roughness, thickness, microhardness and corrosion resistance, of plasma electrolytic oxide coatings on AZ91D alloy were investigated under the processing condition of various coating times. The coatings on AZ91D alloy consisted of MgO, $MgAl_{2}O_{4}$ and $Mg_{2}SiO_{4}$ oxides. The surface roughness and thickness of coatings became larger with increasing the coating time. The microhardness in cross section of coatings was much higher than not only that in surface but that in the conventional anodic oxide coatings, which increased progressively as the coating time increased. After being immersed in 3.5%NaCl solution and methyl alcohol, the corrosion resistance of AZ91D alloy was markedly improved by plasma electrolytic oxidation coating treatment, and the AZ91D alloy coated for 50min revealed excellent corrosion resistance.

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

ESD 전극을 이용한 분무코팅 균일도 개선에 관한 연구 (Improvement of Spray Coating Uniformity using ESD Electrodes)

  • 당현우;양성욱;도양회;최경현
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.118-124
    • /
    • 2016
  • In this study, experiments are conducted to improve spray coating uniformity by using second and third electrodes based on the electrospray atomization mechanism. The uniformity of fabricated thin films can be improved by adjusting the design of the second electrode. The implementation of the second electrode with an elongated hole and a bending angle of $90^{\circ}$ results in highly uniform films. In addition, induced area to substrate is increased by lowering the applied voltage using the third electrode with a round rod shape. A linear correlation between applied voltage and induced area is confirmed. Thin film thickness and surface roughness are measured after the fabrication of thin films through the electrospray process. It is confirmed that a thin film is formed having an average thickness of 273.44 nm, a thickness uniformity of less than 10%, and a surface roughness of 3 nm.

디스플레이 커버 글라스의 표면 처리에 의한 광학요소 제어 (Optical Properties Control by Surface Treatment on Display Cover Glass)

  • 김성수;황재석;전법주
    • 한국전기전자재료학회논문지
    • /
    • 제28권9호
    • /
    • pp.607-614
    • /
    • 2015
  • To provide the clear images from the direct light on electrical board and display devices, anti glare treatment of display cover glass is needed. In this study, the effects of surface treatment temperature, concentration, and etching solution coating thickness of the gel phase on optical elements control such as gloss, haze of reflected light and transmittance, were investigated. Cover glasses were treated at different coating thickness and additive concentration. The optical properties were examined using spectrophotometer, gloss and haze meter. The surface morphology and roughness were measured by the optical microscope and Ra measuring instrument. The etching rate and surface morphologies were dramatically affected by the concentration of acid additive in the viscous gel because of re-crystallization of components in the etching solution, hydrogel formation and coagulant after coating on glass substrate. In our experimental range, cover glass which is surface-treated with various optical properties as well as the morphology uniformity was obtained; in particular, optical properties could be controlled by etching solution coating thickness of the gel phase and the concentration of additive. The gloss was depended on the surface roughness and it showed the linear relationship between optical transmittance and haze of reflected light, respectively.

소수성 특성을 이용한 저점도 AP 표면처리재의 현장 적용성 연구 (A Study on Field Applicability Evaluation of the Hydrophobic - Low Viscosity Surface Treatment Material for Pavement Preventive Maintenance)

  • 최준성
    • 한국도로학회논문집
    • /
    • 제16권1호
    • /
    • pp.31-39
    • /
    • 2014
  • PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part II) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part I, which is a series of companion study. METHODS : Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS : It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.

미세 레이저 가공의 표면코팅 후 전해 에칭 (Laser Micro Machining and Electrochemical Etching After Surface Coating)

  • 김태풍;박민수
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.638-643
    • /
    • 2013
  • Laser beam machining (LBM) is fast, contactless and able to machine various materials. So it is used to cut metal, drill holes, weld or pattern the imprinted surface. However, after LBM, there still leave burrs and recast layers around the machined area. In order to remove these unwanted parts, LBM process often uses electrochemical etching (ECE). But, the total thickness of workpiece is reduced because the etching process removes not only burrs and recast layers, but also the entire surface. In this paper, surface coating was performed using enamel after LBM on metal. The recast layer can be selectively removed without decreasing total thickness. Comparing with LBM process only, the surface quality of enamel coating process was better than that. And edge shape was also maintained after ECE.

Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

  • Liu, Yonggang;Cui, Lei
    • Corrosion Science and Technology
    • /
    • 제13권4호
    • /
    • pp.125-129
    • /
    • 2014
  • Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area.

알루미늄 주물 위 용탕열을 이용한 N-Al계 금속간화합물의 연소합성 코팅 (Ni-Al Based Intermetallics Coating Through SHS using the Heat of Molten Aluminum)

  • 이한영;조용재
    • 한국주조공학회지
    • /
    • 제31권2호
    • /
    • pp.83-86
    • /
    • 2011
  • Ni-Al based intermetallic compounds of self-propagating high-temperature synthesis (SHS) by the heat of molten aluminum and been coated on the aluminum casting alloy. The effects of the pouring temperature in casting and the thickness of casting substrate on SHS of the coating layer have been investigated. The experimental result showed that the reaction of the coating layer was activated with increasing the pouring temperature in casting and the thickness of casting substrate. However, the aluminum substrate was re-melted by the heat of formation for intermetallic compounds. Then, it was considered that some mechanical or thermal treatments for elemental powder mixtures were required to control the heat of formation for intermetallic compounds in advance.