• Title/Summary/Keyword: Coating Flow

Search Result 403, Processing Time 0.021 seconds

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle (초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅)

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Park, Byung-Chul;Chun, Hui-Gon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

Thermal and Flow Characteristics of Fluid with Fuel Type and Equivalence Ratio in Flame Spray Process (연료 종류 및 당량비에 따른 Flame Spray 화염장의 열-유동 특성 연구)

  • Lee, Jae Bin;Kim, Dae Yun;Shin, Dong Hwan;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.202-208
    • /
    • 2013
  • The present study aims to investigate the flow characteristics with respect to fuel type and equivalence ratio in the flame spray coating process. The flame spray flow is characterized by much complex phenomena including combustion, turbulent flows, and combined heat transfer. The present study numerically simulated the flam spray process and examined the gas dynamics involving combustion, gas temperature and velocity distributions in flame spray process by using commercial computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). In particular, we studied the effect of fuel type and equivalence ratio on thermal and flow characteristics which could substantially affect the coating performance. From the results, it was found that the gas temperature distributions were varied with different fuels because of reaction times were different according to the fuel type. The equivalence ratio also could change the spatial flame distribution and the characteristics of coated layer on the substrate.

A Three-Dimensional CFD Study on the Air Flow Characteristics in a Wax Spin Coater for Silicon Wafer Manufacturing (실리콘 웨이퍼 생산공정용 왁스 스핀코팅장치 내 기류 특성에 대한 3차원 전산유동해석)

  • Kim, Yong-Ki;Kim, Dong-Joo;Umarov, Alisher;Kim, Kyoung-Jin;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.146-151
    • /
    • 2011
  • Wax spin coating is a part of several wafer handling processes in the silicon wafer polishing station. It is important to ensure the wax layer free of contamination to achieve the high degree of planarization on wafers after wafer polishing. Three-dimensional air flow characteristics in a wax spin coater are numerically investigated using computational fluid dynamics techniques. When the bottom of the wax spin coater is closed, there exists a significant recirculation zone over the rotating ceramic block. This recirculation zone can be the source of wax layer contamination at any rotational speed and should be avoided to maintain high wafer polishing quality. Thus, four air suction ducts are installed at the bottom of the wax spin coater in order to control the air flow pattern over the ceramic block. Present computational results show that the air suction from the bottom is quite an effective method to remove or minimize the recirculation zone over the ceramic block and the wax coating layer.

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

Three-dimensional Flow and Aerodynamic Loss Downstream of First-Stage Turbine Vane Cascade (터빈 제1단 정익 익렬 하류에서의 3차원 유동 및 압력손실)

  • Jeong, Jae Sung;Bong, Seon Woo;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.521-529
    • /
    • 2017
  • Three-dimensional flow characteristics within a high-acceleration first-stage turbine vane passage has been investigated in a newly-built vane cascade for propulsion. The result shows that there is a strong favorable pressure gradient on the vane pressure surface. On its suction surface, however, there exists not only a much stronger favorable pressure gradient than that on the pressure surface upstream of the mid-chord but also a subsequent adverse pressure gradient downstream of it. By employing two different oil-film methods with upstream coating and full-coverage coating, a four-vortex model horseshoe vortex system can be identified ahead of each leading edge in the cascade, and the separation line of inlet boundary layer flow as well as the separation line of re-attached flow is provided as well. In addition, basic flow data such as secondary flow, aerodynamic loss, and flow turning angle downstream of the cascade are obtained.

A study on the synthesis and mechanical properties of WC/C multilayered films (WC/C 다층박막의 합성 및 기계적 특성에 관한 연구)

  • 명현식;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • WC/C multilayered films were deposited by arc ion plating and magnetron sputter hybrid system with various $C_2$H$_2$ flow rates and bias voltages. The coatings have been characterized with respect to their chemical composition (Glow Discharge Optical Emission Spectroscopy), hardness(Knoop micro-hardness), residual stress(Laser beam bending) and friction coefficient(Ball on disc type wear test). Deposition rate, microhardness and residual stress of WC/C films were observed to increase with increasing the $C_2$$H_2$ flow rates. The highest hardness and residual stress were measured to be 26.5 GPa and 1.1GPa for, WC/C film deposited at substrate bias of -100V. WC/C multilayered film was obtained very low friction coefficient(~0.1).

Computational Flow Analysis of a Large Scale Mixer for Nanopowder Dispersion in Coating Liquid (나노분말이 분산된 기능성 코팅액 제조를 위한 대용량 교반기의 유동해석)

  • Kim, Dongjoo;Kim, Kyoungjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In many technical fields including electronics and display manufacturing processes, properties of coating liquids could be greatly enhanced by adding nanopowders and it requires efficient mixing techniques to achieve uniform dispersion of nanoparticles in liquids. This paper presents the three-dimensional CFD simulations on the flowfields of a highly viscous liquid in the large scale industrial mixer of impeller type. The effects of several important design and operation parameters such as impeller geometry, rotational speed, and degree of liquid viscosity are investigated to appreciate the mixing performance by examining the computational results for flow pattern of rotationally stirred liquid of high viscosity in the mixer.

Study in Minimum of Edge Bump using the Chamfer Angle in Blu-ray Disc Cover layer Spin Coating Process (블루레이 디스크의 커버 레이어 스핀코팅 시 챔퍼각을 이용한 끝단 범프 최소화 연구)

  • Lee, H.G.;Son, S.K.;Cho, K.C.;Shin, H.G.;Kim, B.H.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.178-183
    • /
    • 2006
  • A Blu-ray disc, which has a more than 25GB optical capacity, has been known as a promising next-generation optical disc format. It commonly has a 1.1 mm thick substrate and a 0.1 mm thick cover layer for beam transmitting and the protection of the reflecting surface. The cover layer is generally formed by the spin coating process. However, in conventional spin coating, small bumps are formed along the rim of the disc, which results in the fatal reading error. Numerical simulation of the thin film flow behaviors during spin coating with the commercial solver and optimal spinning conditions was obtained. Thickness distribution of the cover layer according to the variation of substrate's edge shape could be calculated as well. By modifying the shape of the substrate edge shape, the bumps along the disc rim could be minimized, and it was proved that the chamfered edge, around $5{\sim}10$ degree, is the simplest and most effective way to minimize the bumps.

  • PDF

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF