• 제목/요약/키워드: Coating Films

검색결과 1,363건 처리시간 0.028초

Low Temperature Synthesis and Characterization of Sol-gel TiO2 Layers

  • Jin, Sook-Young;Reddy, A.S.;Park, Jong-Hyurk;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.353-353
    • /
    • 2011
  • Titanium dioxide is a suitable material for industrial use at present and in the future because titanium dioxide has efficient photoactivity, good stability and low cost [1]. Among the three phases (anatase, rutile, brookite) of titanium dioxide, the anatase form is particularly photocatalytically active under ultraviolet (UV) light. In fabrication of photocatalytic devices based on catalytic nanodiodes [2], it is challenging to obtain a photocatalytically active TiO2 thin film that can be prepared at low temperature (< 200$^{\circ}C$). Here, we present the synthesis of a titanium dioxide film using TiO2 nanoparticles and sol-gel methods. Titanium tetra-isopropoxide was used as the precursor and alcohol as the solvent. Titanium dioxide thin films were made using spin coating. The change of atomic structure was monitored after heating the thin film at 200$^{\circ}C$ and at 350$^{\circ}C$. The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microcopy, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy (UV-vis), and ellipsometry. XRD spectra show an anatase phase at low temperature, 200$^{\circ}C$. UV-vis confirms the anatase phase band gap energy (3.2 eV) when using the photocatalyst. TEM images reveal crystallization of the titanium dioxide at 200$^{\circ}C$. We will discuss the switching behavior of the Pt /sol-gel TiO2 /Pt layers that can be a new type of resistive random-access memory.

  • PDF

초소수성 표면특성을 갖는 폴리프로필렌 박막형성 (Formation of Polypropylene Thin Films with Superhydrophobic Surface)

  • 박재남;신영식;이원규
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.598-601
    • /
    • 2014
  • Polypropylene의 농도와 코팅 막의 건조 온도 및 나노실리카의 첨가량의 변화 등 polypropylene 박막 제조를 위한 공정 변수들이 박막의 표면 형상 및 특성에 미치는 영향을 연구하였다. Polypropylene의 농도가 30 mg/mL인 경우에 $30^{\circ}C$의 건조 온도로 90 min 동안 93 mTorr의 진공 조건으로 최대 접촉각 $154^{\circ}$를 갖는 초소수성 polypropylene 박막을 얻을 수 있었다. 용매 휘발을 위한 진공 오븐에서의 건조 온도가 증가함에 따라 박막의 거칠기가 감소하여 접촉각이 낮아지는 효과를 가져왔다. Polypropylene-실리카 복합막은 박막 내에 나노실리카의 함유량의 증가에 따라 박막 표면이 미세 다공성 구조에서 미세 구형 구조물로 변환되면서 접촉각의 증가로 초소수성 표면 특성을 보였다.

모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막 (Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature)

  • 유영군;정진용;주정훈
    • 한국표면공학회지
    • /
    • 제47권3호
    • /
    • pp.109-115
    • /
    • 2014
  • High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

Effect of TiO2 Coating Thickness on Photovoltaic Performance of Dye-sensitized Solar Cells Prepared by Screen-printing Using TiO2 Powders

  • Lee, Deuk Yong;Cho, Hun;Kang, Daejun;Kang, Jong-Ho;Lee, Myung-Hyun;Kim, Bae-Yeon;Cho, Nam-Ihn
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.362-366
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) were synthesized using a $0.25cm^2$ area of a $TiO_2$ nanoparticle layer as the electrode and platinum (Pt) as the counter electrode. The $TiO_2$ nanoparticle layers (12 to 22 ${\mu}m$) were screen-printed on fluorine-doped tin oxide glass. Glancing angle X-ray diffraction results indicated that the $TiO_2$ layer is composed of pure anatase with no traces of rutile $TiO_2$. The Pt counter electrode and the ruthenium dye anchored $TiO_2$ electrode were then assembled. The best photovoltaic performance of DSSC, which consists of a $18{\mu}m$ thick $TiO_2$ nanoparticle layer, was observed at a short circuit current density ($J_{sc}$) of $14.68mA{\cdot}cm^{-2}$, an open circuit voltage ($V_{oc}$) of 0.72V, a fill factor (FF) of 63.0%, and an energy conversion efficiency (${\eta}$) of 6.65%. It can be concluded that the electrode thickness is attributed to the energy conversion efficiency of DSSCs.

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.

Increase in Discharge Capacity of Li Battery Assembled with Electrochemically Prepared V2O5/polypyrrole-composite-film Cathode

  • Kim, You-Na;Kim, Joo-Seong;Thieu, Minh-Triet;Dinh, Hung-Cuong;Yeo, In-Hyeong;Cho, Won-Il;Mho, Sun-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3109-3114
    • /
    • 2010
  • Flexible composite films of $V_2O_5$ and conductive polypyrrole ($V_2O_5$/PPy) were grown by facile electrochemical polymerization, wherein an anodization potential was applied to the substrate electrode in an electrolyte solution containing pyrrole monomer and dispersed $V_2O_5$ particles. The coating of polypyrrole (PPy) on the surface of $V_2O_5$ particles was induced by the oxidative catalytic action of $V_2O_5$ during the electrochemical polymerization of pyrrole. PPy in the composite film connects the isolated $V_2O_5$ particles. This results in the formation of conductive networks in the composite film cathode, thereby enhancing the Li+ ion diffusion to the surface of the isolated $V_2O_5$ particles and thus increasing the accessibility of the $Li^+$ ions. The specific capacity tests of the Li rechargeable batteries revealed that the discharge capacity of this composite film cathode was higher, i.e., $497\;mAhg^{-1}$, than that of $V_2O_5$/PPy powder or pristine $V_2O_5$.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

C3H8-SiCl4-H2 시스템에서의 탄화 실리콘 증착에 대한 열역학적인 해석 (Thermodynamic Prediction of SiC Deposition in C3H8-SiCl4-H2 System)

  • 김준우;정성민;김형태;김경자;이종흔;최균
    • 한국세라믹학회지
    • /
    • 제48권3호
    • /
    • pp.236-240
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we demonstrated the phase stability of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure, temperature and gas composition as variables. The ${\beta}$-SiC predominant region over other solid phases like carbon and silicon was changed gradually and consistently with temperature and pressure. Practically these maps provide necessary conditions for homogeneous ${\beta}$-SiC deposition of single phase. With the thermodynamic analyses, the CVD apparatus for uniform coating was modeled and simulated with computational fluid dynamics to obtain temperature and flow distribution in the CVD chamber. It gave an inspiration for the uniform temperature distribution and low local flow velocity over the deposition chamber. These calculation and model simulation could provide milestones for improving the thickness uniformity and phase homogeneity.

금속분말 Ni을 용해 한 Chloride Bath로 도금된 니켈후막의 입자크기에 대한 전류밀도 영향 (The Effects of Current Density on the Grain Size of Electroplated Thick Film Nickel(Ni) by Using Ni Metal Powder Dissolved Chloride Bath)

  • 박근용;엄영랑;최선주;박덕용
    • 한국자기학회지
    • /
    • 제23권1호
    • /
    • pp.12-17
    • /
    • 2013
  • 금속 분말 니켈(Ni)을 HCl용액에 용해시킨 후 $H_3BO_3$, KOH을 첨가하여 Chloride 도금용액을 제조 후 Ni plate 기판에 도금하였다. 도금두께는 $3{\mu}m$로 일정하게 유지하였다. 전류밀도를 $1{\sim}30mA/cm^2$ 변화를 준 결과 전류밀도를 증가시킬수록 Ni 후막표면이 거칠어졌다. $25mA/cm^2$$30mA/cm^2$에서는 균열된 표면형상을 관찰하였다. 또한 XRD patterns 변화를 관찰한 결과 전류밀도가 증가할수록 FCC(111)과 FCC(220) 및 FCC(311)상의 강도는 증가한 반면 FCC(200)상의 강도는 감소하는 것을 관찰하였다. 전기도금된 Ni의 수평 및 수직 자화 값을 측정하였는데 기판에 의한 수평자화 값이 크게 나왔고, 코팅층 두께가 증가할수록 수직자화 값이 커지는 것을 확인하였다.

재결정화법에 의한 유기물 재활용 및 이를 이용한 습식 OLED 제작 (Recycling of Organic Materials Using Purification by Recrystallization for Solution-Processed OLEDs)

  • 이진환;홍기영;신동균;이진영;박종운;서화일;서유석
    • 반도체디스플레이기술학회지
    • /
    • 제15권1호
    • /
    • pp.65-69
    • /
    • 2016
  • We have investigated the possibility of recycling of an organic material that is wasted during thermal evaporation. To this end, we have collected a wasted organic material (N,N'-diphenly-N,N'-bis(1,1'-biphenyl)-4,4'-diamine(NPB)) from a vacuum chamber, purified it by recrystallization, and fabricated bilayer organic light-emitting diodes (OLEDs) with the recycled NPB. It is found that the surface roughness of thin films coated with the purified NPB is much enhanced. OLEDs fabricated by thermal evaporation of the purified NPB show lower device efficiency than OLEDs with the original NPB. However, the power efficiency of OLED fabricated by spin coating of the purified NPB is comparable with that of OLED with the original NPB. Therefore, such a recycling method by recrystallization would be more suitable for solution-processed OLEDs.