DOI QR코드

DOI QR Code

Formation of Polypropylene Thin Films with Superhydrophobic Surface

초소수성 표면특성을 갖는 폴리프로필렌 박막형성

  • Park, Jae Nam (Department of Chemical Engineering, Kangwon National University) ;
  • Shin, Young Sik (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
  • 박재남 (강원대학교 화학공학과) ;
  • 신영식 (강원대학교 화학공학과) ;
  • 이원규 (강원대학교 화학공학과)
  • Received : 2014.08.28
  • Accepted : 2014.10.21
  • Published : 2014.12.10

Abstract

The effects of process parameters for the formation of polypropylene film such as the polypropylene concentration in the solution, drying temperature for coating film, and variation of nano-silica content on the surface structure and property of polypropylene film have been studied. A super-hydrophobic polypropylene film with a maximum contact angle of $154^{\circ}$ was obtained at the condition of a polypropylene concentration of 30 mg/mL, a drying temperature of $30^{\circ}C$, a drying pressure of 93 mtorr for 90 min. The increase of a drying temperature reduced the contact angle by enhancing the surface smoothness of the film. The increase of nano-silica content in the composite film composed of polypropylene and silica changed the surface shape from microporous to microglobular, which led to increasing the contact angle and showed the super-hydrophobic surface property.

Polypropylene의 농도와 코팅 막의 건조 온도 및 나노실리카의 첨가량의 변화 등 polypropylene 박막 제조를 위한 공정 변수들이 박막의 표면 형상 및 특성에 미치는 영향을 연구하였다. Polypropylene의 농도가 30 mg/mL인 경우에 $30^{\circ}C$의 건조 온도로 90 min 동안 93 mTorr의 진공 조건으로 최대 접촉각 $154^{\circ}$를 갖는 초소수성 polypropylene 박막을 얻을 수 있었다. 용매 휘발을 위한 진공 오븐에서의 건조 온도가 증가함에 따라 박막의 거칠기가 감소하여 접촉각이 낮아지는 효과를 가져왔다. Polypropylene-실리카 복합막은 박막 내에 나노실리카의 함유량의 증가에 따라 박막 표면이 미세 다공성 구조에서 미세 구형 구조물로 변환되면서 접촉각의 증가로 초소수성 표면 특성을 보였다.

Keywords

References

  1. L. Jiang, R. Wang, B. Yang, T. J. Li, D. A. Tryk, A. Fujishima, K. Hashimoto, and D. B. Zhu, Binary cooperative complementary nanoscale interfacial materials, Pure Appl. Chem., 72, 73-82 (2000).
  2. A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate, Adv. Mater., 11, 1365-1368 (1999). https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F
  3. T. Sun, L. Feng, X. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 38, 644-652 (2005). https://doi.org/10.1021/ar040224c
  4. K. Liu and L. Jiang, Bio-inspired design of multiscale structures for function integration, Nanotoday, 6, 155-175 (2011). https://doi.org/10.1016/j.nantod.2011.02.002
  5. I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater., 23, 690-718 (2011). https://doi.org/10.1002/adma.201001215
  6. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, The lowest surface free energy based on $-CF_3$ alignment, Langmuir, 15, 4321-4323 (1999). https://doi.org/10.1021/la981727s
  7. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988-994 (1936). https://doi.org/10.1021/ie50320a024
  8. A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-551 (1944). https://doi.org/10.1039/tf9444000546
  9. S. Sakka, Current sol-gel activities in Japan, J. Sol-Gel Sci. Techn., 37, 135-140 (2006). https://doi.org/10.1007/s10971-006-6433-z
  10. A. B. Gurav, S. S. Latthe, C. Kappenstein, S. K. Mukherjee, A. V. Rao, and R. S. Vhatkar, Porous water repellent silica coatings on glass by sol gel method, Porous Mater., 18, 361-367 (2011). https://doi.org/10.1007/s10934-010-9386-0
  11. H. H. Son, J. N. Park, and W. G. Lee, Hydrophobic properties of films grown by torch-type atmospheric pressure plasma in Ar ambient containing C6 hydrocarbon precursor, Korean J. Chem. Eng., 30, 1480-1484 (2013). https://doi.org/10.1007/s11814-013-0075-y
  12. T. I. Kim, C. H. Baek, K. Y. Suh, S. M. Seo, and H. H. Lee, Optical lithography with printed metal mask and a simple superhydrophobic surface, Small, 4, 182-185 (2008). https://doi.org/10.1002/smll.200700882
  13. Y. C. Jung and B. Bhushan, Mechanically durable carbon nanotube- composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag, ACS Nano, 3, 4155-4163 (2009). https://doi.org/10.1021/nn901509r
  14. J. Troger, K. Lunkwitz, and W. Burger, Determination of the surface tension of microporous membranes using contact angle measurements, J. Colloid Interface Sci., 194, 281-286 (1997). https://doi.org/10.1006/jcis.1997.5087
  15. X. Lu, J. Zhang, and Y. Han, Low-density polyethylene (LDPE) surface with a wettability gradient by tuning its microstructures, Macromol. Rapid Commun., 26, 637-642 (2005). https://doi.org/10.1002/marc.200400626
  16. H. Y. Erbil, A. L. Demirel, Y. Avci, and O. Mert, Transformation of a simple plastic into a superhydrophobic surface, Nature, 299, 1377-1380 (2003).
  17. Y. Lv, X. Yu, J. Jia, S. Tu, J. Yan, and E Dahlquist, Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide adsorption, Applied Energy, 90, 167-174 (2012). https://doi.org/10.1016/j.apenergy.2010.12.038
  18. N. Gao, Y. Y. Yan, X. Y. Chen, and D. J. Mee, Superhydrophobic surfaces with hierarchical structure, Materials Letters, 65, 2902-2905 (2011). https://doi.org/10.1016/j.matlet.2011.06.088

Cited by

  1. Development of non-fluorine superhydrophobic textiles using polypropylene resins pp.1746-7748, 2019, https://doi.org/10.1177/0040517519826931
  2. ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 PET 섬유 vol.32, pp.4, 2020, https://doi.org/10.5764/tcf.2020.32.4.265