• Title/Summary/Keyword: Coated layer

Search Result 1,801, Processing Time 0.029 seconds

Manufacturing of YBCO coated conductor deposited on RABiTS by pulsed laser deposition method (RABiTS 위에 PLD 방법으로 증착된 YBCO 초전도 박막 선재의 제조)

  • Ko Rock-Kil;Shi Dongqi;Chung Jun-Ki;Ha Hong-Soo;Kim Ho-Soup;Song Kyu-Jeong;Park Chan;Moon Seung-Hyun;Yoo Sang Im;Kim Young-Cheol
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.74-78
    • /
    • 2004
  • YBCO coated conductor is one of the most promising materials as a new generations wire especially for practical power applications. In this work, $YBa_2$$Cu_3$$O_{7}$ -$\delta$/(YBCO) coated conductors (CC) were deposited by pulsed laser deposition (PLD) from buffer layers to superconducting layer on hi-axially textured metal tape. The oxide multilayer buffered substrate of architectures of $CeO_2$/$YSZ/Y_2$$O_3$ was fabricated by PLD at steady status. Then YBCO layer was deposited on RABiTS substrate by stationary and reel-to-reel (R2R) continuous process and we compared with deposition conditions of both processes. The degree of texture of each layer was investigated using X-ray diffraction including $\theta$-2$\theta$ scans, $\omega$-scans and $\Phi$-scans analysis. Their surface morphology was observed by scanning electron microscopy (SEM). The FWHM of the X-ray $\Phi$-scans and $\Phi$-scans indicated that YBCO and buffer layers closely replicate the in-plane and out-of-plane texture of metal tape. Critical current (Ic) at 77 K, self-field of 75.8 A/cm-width, critical temperature (Tc) of 85 K, and critical current density (Ic) of 3.7 MA/$\textrm{cm}^2$ were measured from coated conductor deposited by stationary process. And coated conductor deposited by R2R continuous process had Ic of 57.5 A/cm-width, Tc of 86.5 K and Jc of 2.0 MA/$\textrm{cm}^2$. The film also exhibits a homogeneous and dense surface morphology.

  • PDF

Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell (LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구)

  • Pyo, Seong-Soo;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • This study reports the high-temperature oxidation kinetics, ASR(area specific resistance), and interfacial microstructure of metallic interconnects coated with conductive oxides in oxidation atmosphere at $800^{\circ}C$, The conductive material LSC($La_{0.8}Sr_{0.2}CoO_3$, prepared by Solid State Reaction) was coated on the Crofer22APU. The contact behavior of coating layer/metal substrate was increased by sandblast. The electrical conductivity of the LSC coated Crpfer22APU was measured by a DC two probe four wire method for 4000hr, in air at $800^{\circ}C$. Microstructure and composition of the coated layer interface were investigated by SEM/EDS. These results show that a coated LSC layer prevents the formation and growth of oxide scale such as $Cr_2O_3$ and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.

Fabrication and Characteristics of Anode-Supported Tubular Solid Oxide Fuel Cell (연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Shin, Dong-Ryul;Lim, Y.E.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1547-1549
    • /
    • 1999
  • As a preliminary experiment for the development of anode-supported tubular cell with proper porosity, we have investigated the anode substrate and the electrolyte-coated anode tube. The anode substrate was manufactured as a function of carbon content in the range of 20 to 50 vol.%. As the caron content increased, the porosity of the anode substrate increased slightly and the carbon content with proper porosity was obtained at 30 vol.%. The anode tube was fabricated by extrusion process and the electrolyte layer was coated on the anode tube by slurry dipping process. The anode-supported tube was cofired successfully. Their sintered property and microstructure were examined and the porosity of the anode tube was 35%. From the gas permeation test, the anode tube was found to be porous enough for gas supply. On the other hand, the anode-supported tube with electrolyte layer indicated a very low gas permeation rate. This means that the coated electrolyte was dense. Based upon these experimental results. we will fabricate and test the anode-supported tubular cell.

  • PDF

Investigation of Dispersion Stability of Conductive Nano Ink Using 1-Octanethiol Coated Copper Nano Powders (1-Octanethiol이 코팅된 나노 구리 분말을 이용한 나노 잉크의 분산도에 대한 연구)

  • Cho, Danee;Baik, Jong-Hwan;Park, Joong-Hark;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.417-422
    • /
    • 2012
  • Copper nano particles have been considered as the materials for conductive ink due to its good thermal, electrical conductivity and low cost. However, copper nanoparticles oxidize easily, decreasing dispersion stability and electrical conductivity. Therefore, it is important to develop a method to minimize oxidation of copper nano particles to improve its dispersion stability property in copper nano ink. In this study, copper nano particles were coated with 1-Octanethiol VSAM(Vaporized Self Assembled Multilayers) to prevent oxidation and coated copper powders were dispersed in conductive ink successfully by studying its relationship of different chain length of solvents to 1-Octanethiol coating layer to fabricate nano ink. Various alcohol solvents, such as 1-Hexanol, 1-Octanol, and 1-Decanol were used. The coating layer was observed using FESEM and TEM. Furthermore, dispersion of copper nano particles in nano inks, was characterized using Turbiscan analyzer, viscometer, and contact angle measurement tool.

Feasibility of Indium Tin Oxide (ITO) Swarf Particles to Transparent Conductive Oxide (TCO)

  • Hong, Sung-Jei;Yang, DuckJoo;Cha, Seung Jae;Lee, Jae-Yong;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.50-53
    • /
    • 2015
  • Indium (In) is widely used for transparent electrodes of photovoltaics as a form of indium tin oxide (ITO) due to its superior characteristics of environmental stability, relatively low electrical resistivity and high transparency to visible light. However, In has been worn off in proportion to growth the In related market, and it leads to raise of price. Although In is obtained from ITO target scarps, much harmful elements are used for the recycling process. To decrease of harmful elements, ITO swarf particles obtained from target scraps was characterized whether it is feasible to transparent conductive oxide (TCO). The ITO swarf was crushed with milling process, and it was mixed with new ITO nanoparticles. The mixed particles were well dispersed into ink solvent to make-up an ink, and it was well coated onto glass substrate. After heat-treatment at $400^{\circ}C$ under $N_2$ rich environments, optical transmittance at 550 nm and sheet resistance of the ITO ink coated layer was 71.6% and $524.67{\Omega}/{\square}$, respectively. Therefore, it was concluded that the ITO swarf was feasible to TCO of touch screen panel.

Effect of CeO2 Coating on the Grain Growth of Cu Particles (CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구)

  • Yoo Hee-Jun;Moon Ji-Woong;Oh You Keun;Moon Jooho;Hwang Hae Jin
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

A Study of Corrosion Resistance and Torque in Bolt Coated with Magni 565 (Magni 565 코팅 볼트의 내식성 및 토오크 특성에 대한 연구)

  • Kim, Sang-Soo;Kim, Moo-Gil;Jung, Byong-Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.195-202
    • /
    • 2007
  • Corrosion resistance and torque of M10 bolt coated with Magni 565 were investigated. Corrosion protection mechanism were also studied with the microstructure of coating film. The bolts with the optimum conditions showed around $10{\mu}m$ layer thickness, a great corrosion resistance in salt spray test and a proper torque in torque/tension test. But torque coefficient k increased with the number of bolting and clamping force of M10 bolt showed significantly lower than that of specified value 28.3kN. It was thought that the repeated bolting made the coating film peel off and powdery. The sample coated with optimum coating conditions showed more higher polarization resistance and corrosion potential than the specimens of top and base coat only. The base coating film was composed of lamellar zinc flakes, which provides a large sacrificial cathodic protection. Meanwhile, the top coating film was composed of organic aluminium pigments layer, which provides barrier protection to the corrosion circumstances.

Preparing Hydrophobic Mesoporous Silica as an Effective Pre-concentration Agent Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Jeong, Myung-Geun;Kim, Dae Han;Jeong, Bora;Yoon, Hye Soo;Seo, Hyun Ook;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.159.1-159.1
    • /
    • 2014
  • We report a simple method for preparing hydrophobic mesoporous silica and its use as a pre-concentrating agent of gas analytes. Hydrophobic mesoporous silica was prepared by coating PDMS (polydimethylsiloxane) thin layer on commercial mesoporous silica with thermal deposition method in a sealed chamber. By using this method, we were able to coat PDMS layer on inner-walls of pores larger than 15 nm. Also, contact angle measured on a surface consisting of PDMS-coated mesoporous silica exceeded $150^{\circ}$, implying that the surface has high water repellency. Pre-concentration ability of PDMS-coated mesoporous silica and baremesoporous silica was tested under dry and humid conditions. Adsorption and molecular desorption of gas analytes was much enhanced by PDMS-coating on mesoporous silica under both dry and humid conditions. Therefore we suggest that PDMS-coated mesoporous silica can be an efficient pre-concentration agent in order to enhance sensitivity of various detectors.

  • PDF

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Fabrication of YSZ buffer layer for YBCO coated conductor by MOCVD method (MOCVD법에 의한 YBCO coated conductor용 YSZ 완충층 제작)

  • 선종원;김형섭;정충환;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.129-132
    • /
    • 2003
  • Yttria stabilized zirconia (YSZ) buffer layers were deposited by a metal organic chemical vapor deposition (MOCVD) technique using single liquid source for the application of YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) coated conductor. Y:Zr mole ratio was 0.2:0.8, and tetrahydrofuran (THF) was used as a solvent. The (100) single crystal MgO substrate was used for searching deposition condition. Bi-axially oriented CeO$_2$ and NiO films were fabricated on {100}〈001〉 Ni substrate by the same method and used as templates. At a constant working pressure of 10 Torr, the deposition temperatures (660~80$0^{\circ}C$) and oxygen flow rates (100~500 sccm) were changed to find the optimum deposition condition. The best (100) oriented YSZ film on MgO was obtained at 74$0^{\circ}C$ and $O_2$ flow rate of 300 sccm. For YSZ buffer layer with this deposition condition on CeO$_2$/Ni template, full width half maximum (FWHM) values of the in-plane and out-of-plane alignments were 10.6$^{\circ}$ and 9.8$^{\circ}$, respectively. The SEM image of YSZ film on CeO$_2$/Ni showed surface morphologies without microcrack.k.

  • PDF