• Title/Summary/Keyword: Coated Conductor

Search Result 418, Processing Time 0.036 seconds

Effects of High Temperature Heat Treatment on the Microstructure and Superconducting Property of HTS Coated Conductor (Coated Conductor의 특성 및 미세조직에 미치는 고온열처리 영향)

  • Doh, Min-Ho;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • HTS coated conductor was heat treated at high temperatures below the melting points of silver and YBCO at different oxygen partial pressures. Current carrying capacity and microstructure were varied depending on the presence of silver protection layer. Critical current of coated conductor without silver protection layer was not changed when heat treatment was performed at $850^{\circ}C$ for 2 hr in an oxygen atmosphere. However, coated conductor with silver protection layer revealed abrupt drop of $I_c$ from 140A to 8A when heat treatment was performed at $800^{\circ}C$ for 2 hr in an oxygen atmosphere. Coated conductor with silver protection layer retained $70{\sim}80$ percent of its original $I_c$ when heat treatment was performed at $800^{\circ}C$ for 2 hr in an argon atmosphere containing 1000ppm oxygen. SEM and XRD observations showed the presence of interaction between YBCO and silver depending on the atmosphere of heat treatment. The reaction between YBCO superconductor and silver was accelerated at high oxygen partial pressure and resulted in the change in microstructure and decrease of critical current density even by the heat treatment performed at temperature much lower than the melting points of silver and YBCO.

  • PDF

Characteristics according to turn ratio of Separated Three-Phase Flux-Coupling Type Superconducting Fault Current Limiter(SFCL) (삼상 분리형 자속커플링 전류제한기의 턴 수의 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Du, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.344-345
    • /
    • 2009
  • The flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO coated conductor was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics according to turn ratio in the flux-coupling type SFCL. The experiment results that the fault current limiting characteristics was improved according to turn ratio.

  • PDF

Current Limiting Characteristics of Improved Flux-Lock Type SFCL According to Winding Direction of Coil 2 and Variable Number of Coil 1 and Coil 2 (개선된 자속구속형의 2차 측 권선 방향과 1차 권선수와 2차 권선수의 변화에 따른 사고전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.714-717
    • /
    • 2010
  • The improved flux-lock type superconducting fault current limiter (SFCL) is composed of a series transformer and superconducting unit of the yttrium-barium-copper-oxide (YBCO) coated conductor. In this paper, we investigated current limiting characteristics through winding direction of coil 2 and variable number of coil 1 and coil 2 in improved flux-lock type SFCL. The better fault current characteristics and the burden of YBCO coated conductor can be confirmed from the experimental result in the higher turn ratio of coil 1 and coil 2 in the additive conditions. In case of subtractive condition, we can confirm a similar result in the same case of experimental conditions. but the burden of YBCO coated conductor has been increased from an increase in winding numbers of coil 2.

Fabrication and test of heater triggered persistent current switch using coated conductor tapes (Coated conductor를 이용한 히터트리거 방식의 영구전류 스위치의 제작과 실험)

  • Kim, Young-Jae;Yang, Seong-Eun;Park, Dong-Keun;Ahn, Min-Cheol;Yoon, Yong-Soo;Ko, Tae-Huk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2039-2040
    • /
    • 2006
  • Persistent current switch (PCS) system in NMR, MRI, MAGLEV and SMES has many advantages, such as uniformity and durability of magnetic field and reducing a thermal loss, which enable many superconducting application to operate effectively. This paper deals with fabrication and test of heater trigger persistent current switch using coated conductor (CC) which has high n-index, critical current independency from external magnetic field and adaptable selectivity of stabilizer. PCS system consists of magnet power supply for energizing current to a magnet, heater, switch and magnet using coated conductor tape. Finite element method (FEM) is used to simulate thermal quench (switching) characteristic and design heater trigger. With FEM simulation, optimal length of heater is calculated by temperature and time analysis. Fabrication of PCS system and test of heater trigger characteristic were performed and compared with simulation result. This paper would be the foundation of researches of superconducting switching application.

  • PDF

Current Limiting Characteristics of Separated Three-phase Flux-coupling Type SFCL according to Winding Number of Coil 2 and Winding Direction (삼상 분리형 자속커플링 전류제한기의 2차 권선의 턴 수 및 결선 방향에 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.694-697
    • /
    • 2009
  • The separated three-phase flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through winding number of coil 2 and winding direction in the flux-coupling type SFCL. Through the analysis, it was shown that additive polarity condition and lower winding number of coil 2 have advantaged from the point of view of fault current limiting and burned of YBCO coated conductor.

Study on the Ag Thin Film Layer Deposition of the YBCO Coated Conductor Using a Plasma Surface Treatment (플라즈마 표면처리를 이용한 YBCO Coated Conductor의 Ag 박막층 증착에 관한 연구)

  • Jeong, Hyun-Gi;Yang, Sung-Chae;Choi, Byoung-Jung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.32-36
    • /
    • 2017
  • The Ag thin film of YBCO (yttrium barium copper oxide) CC (coated conductor) protect the YBCO layer and, at the same time, affects the electrical characteristics of the YBCO CC. Therefore, YBCO CC with the commercialization of the Ag thin film layers makes it easy to establish a process, it can lead to a variety of characteristic changes in YBCO CC. In this paper, plasma surface treatment was carried out to facilitate the deposition of the Ag thin film and the deposition process of YBCO CC. Surface roughness from the test results was increased as the time of the plasma surface treatment increased from 5 to 20 minutes. On the other hand, the surface roughness was decreased for the time of the plasma surface treatment over 20 minutes. Furthermore, after depositing, the increasing of deposit amount and reduced lifting phenomenon showed a similar tendency with the rise time of surface roughness.

2축배향 금속기판을 이용한 YBCO coated conductor 제조를 위한 다층 산화물 박막 제조

  • Jung, Jun-Ki;Shi, Dong-Qi;Choi, Soo-Jung;Yang, Jian;Ko, Rak-Gil;Shin, Ki-Chul;Park, Yu-Mi;Song, Kyu-Jung;Park, Chan;Yoo, Sang-Im
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.12-12
    • /
    • 2003
  • 초전도 선재로의 응용을 위하여 Pulsed laser deposition(PLD)법으로 고온 초전도 체 YBa₂Cu₃O/sub 7-δ/(YBCO) coated conductor를 제조하였다. coated conductor는 금속기판/완충층/초전도층의 구조를 이루고 있는데 완충층은 금속 기판의 집합조직을 초전도층까지 전달하는 역할과 금속기판의 금속이 초전도층으로 확산되어 초전도층의 전기적 특성을 열화시키는 것을 막아주는 확산장벽으로의 역할 등을 수행한다. 완충층의 박막 성장이 제대로 이루어지지 않으면 우수한 초전도 특성을 가지는 초전도층을 얻을 수 없다. 완충층은 금속기판과의 lattice match, thermal match등이 요구되고, 화학적으로 금속기판 및 초전도층과 반응하지 않아야 하며, 긍속기판의 산화없이 epitaxial하게 박막증착이 이루어질 수 있는 재료이어야 한다. 이러한 조건을 만족하는 YBCO, CeO₂, YSZ 등이 주로 사용되고 있다. 전기연구원에서 YBCO coated conductor 선재를 제조하기 위하여 사용하고 있는 다층 박막의 구조는 YBCO/CeO₂/YSZ/CeO₂/Ni(002)과 YBCO/CeO₂/YSZ/Y₂O₃/Ni(002)이며, 최적의 증착조건을 찾기 위하여 성장시 챔버의 산소분압, 완충층의 두께, 기판 온도 등을 변화시켰다. 증착된 완충층 및 초전도층의 집합 조직은 D8-Discover with GADDS(General Area Detector Diffraction System)로 XRD분석을 했고, 미세구조는 SEM으로 관찰하였으며 4단자법을 이용하여 초전도 특성을 측정하였다.

  • PDF