Effects of High Temperature Heat Treatment on the Microstructure and Superconducting Property of HTS Coated Conductor

Coated Conductor의 특성 및 미세조직에 미치는 고온열처리 영향

  • Doh, Min-Ho (Graduate School of Knowledge-based technology and Energy, Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Hong, Gye-Won (Graduate School of Knowledge-based technology and Energy, Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Lee, Hee-Gyoun (Graduate School of Knowledge-based technology and Energy, Department of Advanced Materials Engineering, Korea Polytechnic University)
  • Published : 2009.10.30

Abstract

HTS coated conductor was heat treated at high temperatures below the melting points of silver and YBCO at different oxygen partial pressures. Current carrying capacity and microstructure were varied depending on the presence of silver protection layer. Critical current of coated conductor without silver protection layer was not changed when heat treatment was performed at $850^{\circ}C$ for 2 hr in an oxygen atmosphere. However, coated conductor with silver protection layer revealed abrupt drop of $I_c$ from 140A to 8A when heat treatment was performed at $800^{\circ}C$ for 2 hr in an oxygen atmosphere. Coated conductor with silver protection layer retained $70{\sim}80$ percent of its original $I_c$ when heat treatment was performed at $800^{\circ}C$ for 2 hr in an argon atmosphere containing 1000ppm oxygen. SEM and XRD observations showed the presence of interaction between YBCO and silver depending on the atmosphere of heat treatment. The reaction between YBCO superconductor and silver was accelerated at high oxygen partial pressure and resulted in the change in microstructure and decrease of critical current density even by the heat treatment performed at temperature much lower than the melting points of silver and YBCO.

고온초전도 CC를 다른 산소 분압에서 Ag과 YBCO의 녹는점 보다 낮은 온도에서 열처리시 CC의 특성에 미치는 영향을 실험하였다. 전류의 수송능력과 미세구조는 보호층인 Ag의 존재여부에 다양하게 영향을 미친다. Ag를 제거한 CC를 $850^{\circ}C$의 산소 분위기에서 2시간 동안 열처리 한 시편의 경우 CC의 임계전류의 특성에 영향을 미치지 않았다. 그러나 Ag를 제거하지 않은 CC를 $800^{\circ}C$의 산소 분위기에서 2시간 동안 열처리한 시편의 경우 임계전류가 140 A에서 8 A로 떨어지는 결과를 보였다. 또한, Ag을 제거하지 않은 CC를 1000 ppm 산소 분위기의 $800^{\circ}C$에서 2시간 동안 열처리한 시편의 경우 임계전류 값이 원래 $I_c$ 값의 $70{\sim}80%$의 임계전류 값이 나타났다. SEM 이미지와 XRD 회절 분석 결과 Ni과 Cr 원자들이 표면으로 확산되어 CC의 전류수송 특성에 영향을 미친다.

Keywords

References

  1. Selvamanickam V, Xie Y Y and Reeves J 2007 Superconductivity for Electric Systems DOE 2007 Annual Peer Review (Aug. 2007).
  2. Haugan T, Barnes P N, Wheeler R, Meisenkothen F and Sumption M 2004 Nature 430 867. https://doi.org/10.1038/nature02792
  3. Pomar A, Llorde's A, Gibert M, Ricart S, Puig T and Obradors X 2007 Physica C 460–462 1401. https://doi.org/10.1016/j.physc.2007.04.166
  4. Yamada Y, Ibi A, Miyata S, Fukushima H, Kobayashi H, Kuriki R, Kato T, Hirayama T, Izumi T and Shiohara Y 2007 J. Japan Inst. Met. 71 1011. https://doi.org/10.2320/jinstmet.71.1011
  5. Lee H G, Li Y and Selvamanickam V US patent 7,286,032.
  6. Zhang W, Rupich M W, Schoop U, Verebelyi D T, Thieme C L H, Li X, Kodenkandath T, Huang Y, Siegal E, Buczek D, Carter W, Nguyen N, Schreiber J,Prasova M, Lynch J, Tucker D and Fleshler S 2007 Physica C 463–465 505. https://doi.org/10.1016/j.physc.2007.04.239
  7. Cobb C B, Barnes P N , Haugan T J, Tolliver J, Oberly C E, Sumption M D, Lee E and Collings E W, 2003 IEEE Trans. Appl. Supercond. 13 3553. https://doi.org/10.1109/TASC.2003.812396
  8. Hazelton D W, Xie Y Y, Qiao Y, Zhang E and Selvamanickam V, 2006 Adv. Cryo. Engr., U. Balachandra (Ed.) 52 859.
  9. Ashworth S P and Grilli F, 2006 Supercond. Sci. Technol. 19 227. https://doi.org/10.1088/0953-2048/19/2/013
  10. Kikuchi M, Kato T, Ohkura K, Ayai N, Fujikami J, Fujino K, Kobayashi S, Ueno E, Yamazaki K, Yamade S, Hayashi K, Sato K, Nagai T and Matsui Y, 2006 Physica C 445-448 717. https://doi.org/10.1016/j.physc.2006.06.014
  11. Kashima N, Niwa T, Nagaya S, Onabe K, Saito T, Muroga T, Miyata S, Watanabe T, Yamada Y, 2004 Physica C 412–414 944. https://doi.org/10.1016/j.physc.2004.01.111
  12. Ma B, Li M, Koritala R E, Fisher B L, Dorris S E, Maroni V A, Miller D J, Balachandran U, 2002 Physica C 377 501. https://doi.org/10.1016/S0921-4534(01)01310-7
  13. Yamada Y, Suga T, Kurosaki H, Kim S B, Maeda T, Yamada Y, Hirabayashi I, Yamazaki M, Yoshino H, Watanabe T, 2002 Physica C 372–376 828. https://doi.org/10.1016/S0921-4534(02)00922-X
  14. Paturi P, Kulmala T, Raittila J, Grivel J-C, Laiho R, Andersen N H, 2004 Physica C 408–410 935. https://doi.org/10.1016/j.physc.2004.03.170
  15. Harnois C, Desgardin G, Laffez I, Chaud X, Bourgault D, 2002 Physica C 383 269. https://doi.org/10.1016/S0921-4534(02)01333-3
  16. Maeda J, Izumi T and Shiohara Y, 1999 Supercond. Sci. Technol. 12 45. https://doi.org/10.1088/0953-2048/12/1/008
  17. Koblischka-Veneva A and Koblischka M R, 2008 Materials Science and Engineering B 151 65. https://doi.org/10.1016/j.mseb.2008.02.012
  18. Graham M J, Hussey R J, Cohen M, 1973 J. Electrochem. Soc. 120 1523. https://doi.org/10.1149/1.2403296