• Title/Summary/Keyword: Coated Carbide Tool

Search Result 58, Processing Time 0.022 seconds

Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials (난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석)

  • 전태수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF

A Study on the Surface Roughness Using the Design of Experiment in Turning Process (선반작업에서 실험계획법을 이용한 표면 거칠기에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.519-524
    • /
    • 2000
  • This paper presents a study of surface roughness prediction model by experimental design in turning operation. Regression analysis technique has been used to study the effects of the cutting parameters such as cutting speed, feed and depth of cut on surface roughness. The experiment has been conducted using coated tungsten carbide inserts without cutting fluid. The reliability of the surface roughness model as a function of the cutting parameters has been estimated. The results show that the experimental design used in cutting process is a method to estimate the effects of cutting parameter on surface roughness.

  • PDF

The Optimal Selection of Cutting Parameters in Turning Operation

  • Hong, Min-Sung;Lian, Zhe-Man
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.242-248
    • /
    • 2000
  • This paper has focused on the optimization of the cutting parameters for turning operation based on the Taguchi method. Four cutting parameters, namely, cutting speed, feed, depth of cut and nose radius are optimized with consideration of the surface roughness. The design and analysis of experiments are conducted to study the performance characteristic. The effects of these parameters on the surface roughness have been investigated using the signal-to-noise (S/N) ratio, analysis of variance (ANOVA). The experiments have been peformed using coated tungsten carbide inserts without any cutting fluid. Experimental results illustrate the effectiveness of this approach.

  • PDF

An Experimental Study on the Machinability Influenced by Coated and Uncoated Tips, and Damping Device in Turning (선삭에 있어서의 피복, 비피복팁 및 방진장치가 절삭성에 미치는 영향에 관한 실험적 연구)

  • Nam, Joon-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.62-75
    • /
    • 1986
  • An experimental investigation of the machining characteristics such as cutt- ing resistance, surface roughness and tool wear in turning the test pieces of SM45C steel with both coated and uncoated carbide tool tips under various cutting conditions was conducted. Also a specially designed simple vibration damping device was experimentally evaluated for its effectiveness on machined surface roughness and a vibration test was conducted to confirm its ability to reduce the amplitude. Based on these tests finding, the following conclusions are made; 1. The cutting resistance($\textrm{p}_{1}$) increases as the depth of cut(d) increases at fixed feed rate(f) over the cutting speed(v) range of 43-226 m/min and p decreses about 18% average when V is increased for fixed d and f. At V= 226m/min, $\textrm{p}_{1}$/for A, C tips are about the same level but $\textrm{p}_{1}$ for B tip is 15% less than A, C tips. 2. The specific cutting resistance(Ks) at V=226 m/min was derived for A, B, C tips respectively and the value of Ks for B rip is about 20% less than A, C tips. 3. The surface roughness(Ra) improves significantly as the cutting speed(V) is increased and this effect was greater when V>100 m/min. On the other hand, Ra deteriorates as the feed rate(f) is increased and this trend was accelerated when f>0.3 mm/rev. With regard to the difference of Ra values among A, B, C tips, at V=226m/min, d=0.4mm, and f=0.31-0.61mm/rev, Ra values for B.C tips are about 17% less than tip A. 4. The experimental tool wear equations were derived for A, B, C tips and from these equations, the tool life($\textrm{T}_{\textrm{L}}$) baced on the I.S.O. criteria was calculated to be $\textrm{T}_{\textrm{L}}$<$\textrm{T}_{\textrm{LB}}$<$\textrm{T}_{\textrm{LC}}$ for both flank wear($\textrm{V}_{\textrm{B}}$) and boundary wear($\textrm{V}_{\textrm{N}}$). Hence, the coated tips are superior to the uncoated tip and tip C is considered to be the best. 5. The cutting resistance may be slightly reduced and the surface rounghness improved when the damper is used especially when V>100 m/min. Therefore this damping device is considered to be effective and practical. The experimental surface roughness equations were also derived. Based on the vibration test, it is established that the surface roughness improvement was the result of amplitude reduction made possible by the damper.

  • PDF

Diffusion coefficient estimation of Si vapor infiltration into porous graphite

  • Park, Jang-Sick
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.190.1-190.1
    • /
    • 2015
  • Graphite has excellent mechanical and physical properties. It is known to advanced materials and is used to materials for molds, thermal treatment of furnace, sinter of diamond and cemented carbide tool etc. SiC materials are coated on the surface and holes of graphite to protect particles emitted from porous graphite with 5%~20% porosity and make graphite hard surface. SiC materials have high durability and thermal stability. Thermal CVD method is widely used to manufacture SiC thin films but high cost of machine investment and production are required. SiC thin films manufactured by Si reaction liquid and vapore with carbon are effective because of low cost of machine and production. SiC thin films made by vapor silicon infiltration into porous graphite can be obtained for shorter time than liquid silicon. Si materials are evaporated to the graphite surface in about $10^{-2}$ torr and high temperature. Si materials are melted in $1410^{\circ}C$. Si vapor is infiltrated into the surface hole of porous graphite and $Si_xC_y$ compound is made. $Si_x$ component is proportional to the Si vapor concentration. Si diffusion coefficient is estimated from quadratic equation obtained by Fick's second law. The steady stae is assumed. Si concentration variation for the depth from graphite surface is fitted to quadratic equation. Diffusion coefficient of Si vapor is estimated at about $10^{-8}cm^2s^{-1}$.

  • PDF

Enhanced Wear Resistance of Cutting Tools Using Multilayer ta-C Coating (다층막 ta-C 코팅 적용을 통한 절삭공구의 내마모성 향상)

  • Kim, Do Hyun;Kang, Yong-Jin;Jang, Young-Jun;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.360-368
    • /
    • 2020
  • Wear resistance of cutting tools is one of the most important requirements in terms of the durability of cutting tool itself as well as the machining accuracy of the workpiece. Generally, tungsten carbide ball end mills have been processed with hard coatings for high durability and wear resistance such as diamond coating and tetrahedral amorphous carbon(ta-C) coating. In this study, we developed multilayer ta-C coatings whose wear resistance is comparable to that of diamond coating. First, we prepared single layer ta-C coatings according to the substrate bias voltage and Ar gas flow, and the surface microstructure, raman characteristics, hardness and wear characteristics were evaluated. Then, considering the hardness and wear resistance of the single layer ta-C, we fabricated multilayer coatings consisting of hard and soft layers. As a result, it was confirmed that the wear resistance of the multilayer ta-C coating with hardness of 51 GPa, and elastic recovery rate of 85% improved to 97% compared to that of the diamond coated ball end mill.

Design optimization for analysis of surface integrity and chip morphology in hard turning

  • Dash, Lalatendu;Padhan, Smita;Das, Sudhansu Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.561-578
    • /
    • 2020
  • The present work addresses the surface integrity and chip morphology in finish hard turning of AISI D3 steel under nanofluid assisted minimum quantity lubrication (NFMQL) condition. The surface integrity aspects include microhardness, residual stress, white layer formation, machined surface morphology, and surface roughness. This experimental investigation aims to explore the feasibility of low-cost multilayer (TiCN/Al2O3/TiN) coated carbide tool in hard machining applications and to assess the propitious role of minimum quantity lubrication using graphene nanoparticles enriched eco-friendly radiator coolant based nano-cutting fluid for machinability improvement of hardened steel. Combined approach of central composite design (CCD) - analysis of variance (ANOVA), desirability function analysis, and response surface methodology (RSM) have been subsequently employed for experimental investigation, predictive modelling and optimization of surface roughness. With a motivational philosophy of "Go Green-Think Green-Act Green", the work also deals with economic analysis, and sustainability assessment under environmental-friendly NFMQL condition. Results showed that machining with nanofluid-MQL provided an effective cooling-lubrication strategy, safer and cleaner production, environmental friendliness and assisted to improve sustainability.

Effect of Intermediate Layer Coated Diamond Particles on Performance of Diamond Tool (다이아몬드 입자에 형성된 중간층이 다이아몬드 공구 성능에 미치는 영향)

  • Son, Kyung-Sik;Lee, Jung-Hoon;Choi, Yong-Je;Jung, Uoo-Chang;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.216-222
    • /
    • 2013
  • In order to improve the performance of electrodeposited diamond-nickel composite, surface modification of diamond particles was carried out using powder immersion reaction assisted coating (PIRAC). Titanium and chromium were selected as coating elements, which are known as carbide former. With respect to the powder elements, various phases were formed on diamond; metallic Ti and TiC for Ti powder, $Cr_3C_2$ for Cr powder, and TiC and $Cr_3C_2$ for Ti-Cr mixed powder. Surface modified diamond particle showed higher specific surface area, especially Ti coating induced considerable increase of specific surface area. The increase of specific surface area suggests increase of surface roughness, and that was confirmed by surface observation using FE-SEM. In addition, wear properties of diamond-nickel composite including surface modified diamonds were improved, and Ti coated diamond showed the highest performance. The wear property of diamond-nickel composite is dependent on adhesion strength between diamond particle and nickel layer. Therefore, surface modification of diamond particle by PIRAC increasing surface roughness is effective to improve the properties of diamond-nickel composite.