DOI QR코드

DOI QR Code

다층막 ta-C 코팅 적용을 통한 절삭공구의 내마모성 향상

Enhanced Wear Resistance of Cutting Tools Using Multilayer ta-C Coating

  • 김도현 (한국재료연구원, 표면재료연구본부) ;
  • 강용진 (한국재료연구원, 표면재료연구본부) ;
  • 장영준 (한국재료연구원, 표면재료연구본부) ;
  • 김종국 (한국재료연구원, 표면재료연구본부)
  • Kim, Do Hyun (Surface technology division, Korea Institute of Materials Science) ;
  • Kang, Yong-Jin (Surface technology division, Korea Institute of Materials Science) ;
  • Jang, Young-Jun (Surface technology division, Korea Institute of Materials Science) ;
  • Kim, Jongkuk (Surface technology division, Korea Institute of Materials Science)
  • 투고 : 2020.12.15
  • 심사 : 2020.12.28
  • 발행 : 2020.12.31

초록

Wear resistance of cutting tools is one of the most important requirements in terms of the durability of cutting tool itself as well as the machining accuracy of the workpiece. Generally, tungsten carbide ball end mills have been processed with hard coatings for high durability and wear resistance such as diamond coating and tetrahedral amorphous carbon(ta-C) coating. In this study, we developed multilayer ta-C coatings whose wear resistance is comparable to that of diamond coating. First, we prepared single layer ta-C coatings according to the substrate bias voltage and Ar gas flow, and the surface microstructure, raman characteristics, hardness and wear characteristics were evaluated. Then, considering the hardness and wear resistance of the single layer ta-C, we fabricated multilayer coatings consisting of hard and soft layers. As a result, it was confirmed that the wear resistance of the multilayer ta-C coating with hardness of 51 GPa, and elastic recovery rate of 85% improved to 97% compared to that of the diamond coated ball end mill.

키워드

참고문헌

  1. S. Veprek, M. J. G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surf. Coat. Technol. 202 (2008) 5063-5073. https://doi.org/10.1016/j.surfcoat.2008.05.038
  2. K.-D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, R. M'Saoubi, Cutting with coated tools: Coating technologies, characterization methods and performance optimization, CIRP Ann. Manuf. Technol. 61 (2012) 703-723. https://doi.org/10.1016/j.cirp.2012.05.006
  3. E. J. Oles, A. Inspektor, C. E. Bauer, The new diamond-coated carbide cutting tools, Diam. Relat. Mater. 5 (1996) 617-624. https://doi.org/10.1016/0925-9635(95)00347-9
  4. J. Hu, Y. K. Chou, R. G. Thompson, J. Burgess, S. Street, Characterizations of nano-crystalline diamond coating cutting tools, Surf. Coat. Technol. 202 (2007) 1113-1117. https://doi.org/10.1016/j.surfcoat.2007.07.050
  5. A. Erdemir, J. M. Martin, Superior wear resistance of diamond and DLC coatings, Curr. Opin. Solid State Mater. Sci. 22 (2018) 243-254. https://doi.org/10.1016/j.cossms.2018.11.003
  6. X. Lei, L. Wang, B. Shen, F. Sun, Z. Zhang, Comparison of chemical vapor deposition diamond-, diamond-like carbon- and TiAlN-coated microdrills in graphite machining, Proc. Inst. Mech. Eng. B J. Eng. Manuf. 227 (2013) 1299-1309. https://doi.org/10.1177/0954405413487898
  7. M. Dai, K. Zhou, Z. Yuan, Q. Ding, Z. Fu, The cutting performance of diamond and DLC-coated cutting tools, Diam. Relat. Mater. 9 (2000) 1753-1757. https://doi.org/10.1016/S0925-9635(00)00296-X
  8. H. Fukui, J. Okida, N. Omori, H. Moriguchi, K. Tsuda, Cutting performance of DLC coated tools in dry machining aluminum alloys, Surf. Coat. Technol. 187 (2004) 70-76. https://doi.org/10.1016/j.surfcoat.2004.01.014
  9. J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R Rep. 37 (2002) 129-281. https://doi.org/10.1016/S0927-796X(02)00005-0
  10. F. Qin, J. Hu, Y. K. Chou, R. G. Thompson, Delamination wear of nano-diamond coated cutting tools in composite machining, Wear 267 (2009) 991-995. https://doi.org/10.1016/j.wear.2008.12.065
  11. C. Kuo, C. Wang, S. Ko, Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites, Wear 398-399 (2018) 1-12. https://doi.org/10.1016/j.wear.2017.11.015
  12. D. Zhang, B. Shen, F. Sun, Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates, Appl. Surf. Sci. 256 (2010) 2479-2489. https://doi.org/10.1016/j.apsusc.2009.10.092
  13. C. Ducros, V. Benevent, F. Sanchette, Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools, Surf. Coat. Technol. 163-164 (2003) 681-688. https://doi.org/10.1016/S0257-8972(02)00656-4
  14. X. Sui, J. Liu, S. Zhang, J. Yang, J. Hao, Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance, Appl. Surf. Sci. 439 (2018) 24-32. https://doi.org/10.1016/j.apsusc.2017.12.266
  15. D. Drescher, J. Koskinen, H.-J. Scheibe, A. Mensch, A model for particle growth in arc deposited amorphous carbon films, Diam. Relat. Mater. 7 (1998) 1375-1380. https://doi.org/10.1016/S0925-9635(98)00211-8
  16. P. K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films, Mater. Chem. Phys. 96 (2006) 253-277. https://doi.org/10.1016/j.matchemphys.2005.07.048
  17. S. Xu, B. K. Tay, H. S. Tan, L. Zhong, Y. Q. Tu, S. R. P. Silva, W. I. Milne, Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy, J. Appl. Phys. 79 (1996) 7234-7240. https://doi.org/10.1063/1.361440
  18. Y.-T. Cheng, C.-M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett. 73 (1998) 614-616. https://doi.org/10.1063/1.121873
  19. C. S. Coates, M. R. Ryder, J. A. Hill, J.-C. Tan, A. L. Goodwin, Large elastic recovery of zinc dicyanoaurate, APL Mater. 5 (2017) 066107. https://doi.org/10.1063/1.4990549