• Title/Summary/Keyword: Coastal ambient noise

Search Result 17, Processing Time 0.018 seconds

Analysis of Dependence on Wind Speed and Ship Traffic of Underwater Ambient Noise at Shallow Sea Surrounding the Korean Peninsula (한반도 주변해역 수중배경소음의 풍속과 선박분포에 따른 의존성 분석)

  • 최복경;김봉채;김철수;김병남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.233-241
    • /
    • 2003
  • It is statistically analyzed the underwater ambient noise measured at 13 sites less than 200 m deep in the shallow water surrounding the Korean Peninsula for 9 yews from 1990 to 1998 in various environmental conditions. Frequency spectra were obtained with the 1/3-octave band center frequencies from 25㎐ to 20 ㎑. The analyzed shallow water noise spectra were some different from the deep water blown as the Wenz spectra. We could know that the ambient noise level shows higher than it in same condition by effect of various ship activity and the coastal noise, surface waves, and so on. As a result, we produced the coastal ambient noise spectra curve based on these results in shore of the Korea Peninsula.

Moored measurement of the ambient noise and analysis with environmental factors in the coastal sea of Jeju Island (제주 연해 수중 주변소음 계류 측정과 환경 변화에 따른 분석)

  • Jeong, Inyong;Min, Soohong;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.390-399
    • /
    • 2020
  • Underwater ambient noise was measured at the eastern and western costal sites of Jeju Island where the water depth was 20 m by a hydrophone moored at mid-depth (10 m) for 4 months. These eastern and western sites were selected as potential sites for offshore wind power generator and the current wave energy generator, respectively. Ambient noise was affected by environmental data such as wind and wave, which were collected from nearby weather stations and an observation station. Below 100 Hz, ambient noise was changed about 5 dB ~ 20 dB due to low and high tide. Below 1 kHz, wave and wind effects were the main source for ambient noise, varying up to 25 dB. Ambient noise was strongly influenced by wave at lower frequency and by wind at higher frequency up to over 1 kHz. The higher frequency range over 10 kHz was influenced by rainfall and biological sources, and the spectrum was measured about 10 dB higher than the peak spectrum level from Wenz curve at this frequency range.

A Study on the Sources of Ambient Sea Noise in the Coastal Water of Pusan (부산 연안에서의 수중소음원에 관한 연구)

  • 김성부
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.180-183
    • /
    • 1990
  • The variability of ambient noise with time and water depth is measured in the coastal water of Pusan. The Noise Spectrum levels are relatively high, and have standard deviations amounting to 3 to 4 dB with time and 2 to 3 dB with water depth in the B area of high ship activity. On the other hand, in the A area where shipping is sparse the standard deviations are only 1 to 2 dB with time and water depth respectively. These results show that ship traffic is one of the dominent sources at frequencies greater than 500Hz.

  • PDF

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

Analysis of the influence of ship traffic and marine weather information on underwater ambient noise using public data (공공데이터를 활용한 선박 통행량 및 해양기상정보의 수중 주변소음에 대한 영향성 분석)

  • Kim, Yong Guk;Kook, Young Min;Kim, Dong Gwan;Kim, Kyucheol;Youn, Sang Ki;Choi, Chang-Ho;Kim, Hong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.606-614
    • /
    • 2020
  • In this paper, we analyze the influences of ship traffic and marine weather information on underwater ambient noise. Ambient noise is an important environmental factor that greatly affects the detection performance of underwater sonar systems. In order to implement an automated system such as prediction of detection performance using artificial intelligence technology, which has been recently studied, it is necessary to obtain and analyze major data related to these. The main sources of ambient noise have various causes. In the case of sonar systems operating in offshore seas, the detection performance is greatly affected by the noise caused by ship traffic and marine weather. Therefore, in this paper, the impact of each data was analyzed using the measurement results of ambient noise obtained in coastal area of the East Sea of Korea, and public data of nearby ship traffic and ocean weather information. As a result, it was observed that the underwater ambient noise was highly correlated with the change of the ship's traffic volume, and that marine environment factors such as wind speed, wave height, and rainfall had an effect on a specific frequency band.

The Underwater Noise in the Coastal Seas (연안의 수중소음 분석에 관한 연구)

  • Yoon, Gab-Dong;Park, Hae-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.3
    • /
    • pp.36-41
    • /
    • 1986
  • Uederwater ambient noise was measured at the set net in the Neung-Po Eay. The environment characteristics depend upon oceanographic conditions of sound propagation and its implication on the source of ambient noise. The results of measurement and analysis were as follows: 1. The frequency of the maximum noise level of two passenger. vessels was around 300 Hz. The spectrum level of the fast vessel (the Air-Ferry) was lower than the little slow vessel (the Olympic) between 50-150 Hz in frequences. 2. The spectrum level of the surface in the playground of the set net was lower than the deeper water till 500 Hz, but over that frequency the level was getting lower as the depth was deep. 3. The spectrum level outside the bag of the set net was greater than the inside between 50 and 700 Hz, but over 1,500 Hz the level inside the bag was higher than the outside. 4. The spectrum level of the outside of the breeding tank was higher than the inside in the daytime. However at night opposite phenomenon occurs.

  • PDF

Characteristics of Ambient-Noise in the Shallow Coastal Area (천해 연안역에서의 수중소음의 특징)

  • 나정열;최진혁;김재완
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.6
    • /
    • pp.58-63
    • /
    • 1991
  • 선박소음이 우세한 해역에서 측정된 수중소음의 크기를 분석한 결과 100Hz 미만에서는 깊은 수 심에서의 소음 크기가 낮은 수심에서보다 크게 나타나고 있다. 한편 계절적인 소음 크기의 변화는 dam 파 전달 조건에 좌우되며, 일반적인 spectrum shape은 Urick의 선박소음이 우세한 경우의 spectrum과 매우 유사하다.

  • PDF

The Variability of Ambient Noise Levels in Coastal Waters of Korea (한국 연안에서의 수중소음 수준의 변화)

  • 김성부;장지원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.47-52
    • /
    • 1985
  • 한국 연안에서 높게 보고되고 있는 수중소음의 소음원을 규명하기 위하여 해상교통량 변화에 따 르는 소음 수준의 변화를 2KHz 이하에서 관측하였다. 100Hz 부근의 소음은 이미 잘 알려진대로 선박에 기인함이 실험결과에서 드러났지만, 그 수준은 100~110dB로 높게 관측되었다. 더욱이 관측선으로 부터 의 거리변화율이 심한 근거리에 다수의 선박들이 분포해 있을 때 10분 간격의 소음 변화는 특히 1KHz 이상에서 최고 10 dB까지 변화를 보였다. 이것은 연근해의 밀집해 있는 선박들이 이 주파수대에서도 하 나의 소음원으로서 작용함을 의미한다.

  • PDF

The Underwater Noise of Fishing Gears in Operation (망어구의 수중소음에 관한 연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1980
  • An underwater recording system was designed to measure the sound spectra of the underwater noises produced by fishing gears in operation. Recorded were noi~es from three types of fishing gears: an anchovy set net, three anchovy boat seine net and a stern trawlnet. Acoustic analysis were made using a heterodyne analyzer, a digital frequency analyzer and a level recorder. The no;'e produced by the anchovy set net was found in the high frequency region of the onset of ambient noise spectrum with a slope of - 6 dB/octave. Here the ambient noise spectrum is higher, though similar in shape, than Knudsen spectrum, and is attributed to the breaking action of the coastal wave. Measured noise spectra during the fishing operations of the anchovy boat seine nets are attributed to the background noise of the sea in the presence of the fishing vessels. The frequency distribution of the noise was 20~5, 000 Hz in the case of two steel anchovy boat seiners, and 20-3,000 Hz in the case of the wooden anchovy boat seiner. The predominant frequency range was 250~350 Hz and maximum sound pressure level was 122 dB (re $1\muPa$) in the case of the steel boat and ] 17 dB in the case of the wooden boat. The noises produced by the trawl fishing gears are remarkably higher than the background noi~e in the presence of the fishing vessel. The frequency distribution of the noi~e was 20-6,300 Hz. The predominant frequency range was 100~200 Hz and maximum sound pressure level was 137 dB ( re $1\muPa$) . The noise spectra were not so much different from that caused by vibrations of the towing cable and the structure of the ground rope of the trawl net towed in an experimental tank.

  • PDF

Underwater Acoustic Communication Link Analysis (수중음향통신 링크 해석)

  • Choi, Young-Chol;Byun, Sung-Hoon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1465-1471
    • /
    • 2007
  • The electro-magnetic wave propagates through the air in the terrestrial communications, but the acoustic wave propagates through the seawater in the underwater acoustic communication(UAC). It makes the differences between the UAC link and the well hon air communication links. In this paper, we have studied path loss, absorption and ambient noise of the ocean as a medium for UAC. We have analyzed the absorption coefficient and ambient noise level of the coastal area of South Korea and suggested a strategy for the selection of the frequency band by considering the absorption coefficient and ambient noise level. Also, we present an illustrative example of a link budget for the QPSK UAC system which has carrier frequency 25kHz, bit rate 10kbps, range 1km and BER $10^{-3}$ in the shallow water environment with an ideal AWGN assumption.