• Title/Summary/Keyword: Coastal Zones

Search Result 203, Processing Time 0.033 seconds

Temporal Variations of Seaweed Biomass in Korean Coasts: Munseom, Jeju Island (한국연안 해조류 생물량의 연간 변동 양상: 제주도 문섬지역)

  • Ko, Young-Wook;Sung, Gun-Hee;Yi, Chang-Ho;Kim, Hyun-Hee;Choi, Dong-Mun;Ko, Yong-Deok;Lee, Wook-Jae;Koh, Hyoung-Bum;Oak, Jung-Hyun;Chung, Ik-Kyo;Kim, Jeong-Ha
    • ALGAE
    • /
    • v.23 no.4
    • /
    • pp.295-300
    • /
    • 2008
  • Seaweed biomass was estimated using a nondestructive method in the rocky subtidal zones in Munseom, Jeju Island, Korea from July 2006 to April 2008. Seasonal samplings were done at the depth of 1, 5, 10 m using 50 x 50 cm quadrat. Mean biomass was comprised of 2,784 g wet wt m$^{-2}$ and the biomass values varied seasonally from 1,176 g wet wt m$^{-2}$ to 4,217 g wet wt m$^{-2}$ with the highest point in April. Biomass reached maximum at 5 m depth in spring, but was shifted to 10 m depth in summer. Common seaweeds appeared year round in Munseom were Codium minus, Ecklonia cava, Sargassum spp., articulated corallines and Plocamium telfairiae. Among them, E. cava showed the highest biomass (average of 1,288 g wet wt m$^{-2}$), comprising 4% of total biomass. Only 12 species’' biomass covered 98% of total value, which indicated the contribution of few common species to algal community. Seaweed biomass in Munseom represented one of the highest values in coastal regions in Korea.

Studies on the Structure and Production Processes of Biotic Communities in the Coastal Shallow Waters of Korea 2. Using the Vertebrae for Age Determination of the Spottybelly Greenling, Agrammus agrammus (한국연안천해생물군집의 구조와 생산 2. 추체에 의한 노래미(Agrammus agrammus)의 연령 사정)

  • KANG Yong Joo;KIM Chong Kawn
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.75-81
    • /
    • 1983
  • The studies on the age determination of the spottybelly greenling, Agrammus agrammus, caught in the shore of Tongbaeksom were done by the articulative fossae of the vertebra through a stero-dissecting microscope. For determining annunli the vertebra had been cleaved lengthwise in the dorsoventral direction. Half of the vertebra had been fixed on Canada balsam with the flat side directed upwards. The alternation of two zones on the vertebra was observed. One is wide and light-colored, and the other is narrow and dark-colored. The annual layer, where the dark-colored zone shifts to the light-colored one, was appeared extending from July to August once a year. Study of the growth of A. agrammus was carried out by the method of back calculation from the vertebra.

  • PDF

Characterizing Overlap Area of KOMPSAT-3 (다목적실용위성 3호 Overlap 영역의 특성분석)

  • Seo, Doo-Chun;Kim, Hee-Seob
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • The KOrea Multi-Purpose Satellite-3 (KOMPSAT-3) provides 0.7 m Ground Sample Distance (GSD) panchromatic image and 2.8 m GSD multi-spectral image data for various applications. The KOMPSAT-3 system data will be applied in the field of earth observations, covering land, sea, coastal zones, and Geographic Information Systems (GIS). In order to keep the swath width of 15km at nadir view of KOMPSAT-3, CCD consist of approximately 24,020 pixels excluding 20 dark pixels at both sides and has overlap region. Because there are no CCD-line sensors with a pixel size of $7{\mu}m$, the field of view is separated into 2 parts and imaged on 2 detectors, each with 12,080 pixels. Therefore, 2 detectors have different geometric characteristic. This paper provides image simulation for geometric characteristics analysis of overlapping area of KOMPSAT-3 using KOMPSAT-2 image data.

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF

Power spectral density method performance in detecting damages by chloride attack on coastal RC bridge

  • Mehrdad, Hadizadeh-Bazaz;Ignacio J., Navarro;Victor, Yepes
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element's bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure's life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

3D Numerical Modelling of Water Flow and Salinity Intrusion in the Vietnamese Mekong Delta

  • Lee, Taeyoon;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.207-207
    • /
    • 2021
  • The Vietnamese Mekong Delta(VMD) covers an area of 62,250 km2 in the lowest basin of the Mekong Delta where more than half of the country's total rice production takes place. In 2016, an estimated 1.29 million tonnes of Vietnam's rice were lost to the country's biggest drought in 90 year and particularly in VMD, at least 221,000 hectares of rice paddies were hit by the drought and related saltwater intrusion from the South China Sea. In this study, 3D numerical simulations using Delft3D hydrodynamic models with calibration and validation process were performed to examine flow characteristics, climate change scenarios, water level changes, and salinity concentrations in the nine major estuaries and coastal zones of VMD during the 21st century. The river flows and their interactions with ocean currents were modeled by Delft3D and since the water levels and saltwater intrusion in the area are sensitive to the climate conditions and upstream dam operations, the hydrodynamic models considered discharges from the dams and climate data provided by the Coupled Model Intercomparison Project Phase 6(CMIP6). The models were calibrated and verified using observational water levels, salinity distribution, and climate change data and scenarios. The results agreed well with the observed data during calibration and validation periods. The calibrated models will be used to make predictions about the future salinity intrusion events, focusing on the impacts of sea level rise due to global warming and weather elements.

  • PDF

Integration of top-down and bottom-up approaches for a complementary high spatial resolution satellite rainfall product in South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.153-153
    • /
    • 2022
  • Large-scale and accurate observations at fine spatial resolution through a means of remote sensing offer an effective tool for capturing rainfall variability over the traditional rain gauges and weather radars. Although satellite rainfall products (SRPs) derived using two major estimation approaches were evaluated worldwide, their practical applications suffered from limitations. In particular, the traditional top-down SRPs (e.g., IMERG), which are based on direct estimation of rain rate from microwave satellite observations, are mainly restricted with their coarse spatial resolution, while applications of the bottom-up approach, which allows backward estimation of rainfall from soil moisture signals, to novel high spatial resolution soil moisture satellite sensors over South Korea are not introduced. Thus, this study aims to evaluate the performances of a state-of-the-art bottom-up SRP (the self-calibrated SM2RAIN model) applied to the C-band SAR Sentinel-1, a statistically downscaled version of the conventional top-down IMERG SRP, and their integration for a targeted high spatial resolution of 0.01° (~ 1-km) over central South Korea, where the differences in climate zones (coastal region vs. mainland region) and vegetation covers (croplands vs. mixed forests) are highlighted. The results indicated that each single SRP can provide plus points in distinct climatic and vegetated conditions, while their drawbacks have existed. Superior performance was obtained by merging these individual SRPs, providing preliminary results on a complementary high spatial resolution SRP over central South Korea. This study results shed light on the further development of integration framework and a complementary high spatial resolution rainfall product from multi-satellite sensors as well as multi-observing systems (integrated gauge-radar-satellite) extending for entire South Korea, toward the demands for urban hydrology and microscale agriculture.

  • PDF

A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment (염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구)

  • Jong Moon Ha;Deog Nam Shim;Seung Hyun Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

Classification of Carbon-Based Global Marine Eco-Provinces Using Remote Sensing Data and K-Means Clustering (K-Means Clustering 기법과 원격탐사 자료를 활용한 탄소기반 글로벌 해양 생태구역 분류)

  • Young Jun Kim;Dukwon Bae;Jungho Im ;Sihun Jung;Minki Choo;Daehyeon Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1043-1060
    • /
    • 2023
  • An acceleration of climate change in recent years has led to increased attention towards 'blue carbon' which refers to the carbon captured by the ocean. However, our comprehension of marine ecosystems is still incomplete. This study classified and analyzed global marine eco-provinces using k-means clustering considering carbon cycling. We utilized five input variables during the past 20 years (2001-2020): Carbon-based Productivity Model (CbPM) Net Primary Production (NPP), particulate inorganic and organic carbon (PIC and POC), sea surface salinity (SSS), and sea surface temperature (SST). A total of nine eco-provinces were classified through an optimization process, and the spatial distribution and environmental characteristics of each province were analyzed. Among them, five provinces showed characteristics of open oceans, while four provinces reflected characteristics of coastal and high-latitude regions. Furthermore, a qualitative comparison was conducted with previous studies regarding marine ecological zones to provide a detailed analysis of the features of nine eco-provinces considering carbon cycling. Finally, we examined the changes in nine eco-provinces for four periods in the past (2001-2005, 2006-2010, 2011-2015, and 2016-2020). Rapid changes in coastal ecosystems were observed, and especially, significant decreases in the eco-provinces having higher productivity by large freshwater inflow were identified. Our findings can serve as valuable reference material for marine ecosystem classification and coastal management, with consideration of carbon cycling and ongoing climate changes. The findings can also be employed in the development of guidelines for the systematic management of vulnerable coastal regions to climate change.

The Differences of Rice Growth and Yield at Various Agroclimatic Regions in Chungnam Province (충남지역 농업기후 지대별 벼 생육 및 수량 변이)

  • Choi, N.G.;Park, J.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.163-174
    • /
    • 2018
  • Rice cultivation is immensely affected by many climatic factors including temperature, precipitation, etc, and imbalanced climatic conditions negatively affect the growth of rice. In this study, we investigated the effects of different agroclimatic zones of Chungnam Province on rice quality and examined the correlations between climatic characteristics and rice yield components. Average temperatures and rainfall were higher in 'Western Sobaek Inland' than those in the 'South Western coastal zone, and precipitation records showed a wide variation among counties due to typhoons during the examined periods. The average accumulative temperature affecting the magnitude of production during reproductive growth periods was higher in "Cheon-An", "Gong-Ju", "Yeon-Gi (Se-Jong)", "Bo-Ryeong", and "Dang-Jin" counties than those in other counties. The plant height was higher in 'Western Sobaek Inland' counties such as "Yeon-Gi(Se-Jong)" and "Cheon-An", and 'Southern Charyeong Plain' counties such as "Cheong-Yang", "Dang-Jin", and "A-San", than those in other counties. The number of tillers during the 40 days after rice transplantation in "Seo-Cheon" and "Bo-Ryeong" counties increased compared to other counties. This result was relevant to the fact that the date of rice transplantation in those counties was 3 to 4 days later than those in other counties of Chung-Nam Province. The average yield (milled rice basis) was the highest in 'Western Sobaek Inland' zone, showing 3,756 kg ha-1, followed by 'Southern Charyeong Plain' zone showing 3,621kg ha-1, and was the lowest in 'South Western coastal zone by 3,315kg ha-1. "Yeon-Gi(Se-Jong)" and "Dang-Jin" counties showed the highest yields of 4,100kg ha-1. "Seo-San", "Seo-Cheon", and "Tae-An" counties were relatively lower yields of 3,240~3,280kg ha-1 in comparison of other counties.