• 제목/요약/키워드: Coarse positioning

검색결과 52건 처리시간 0.038초

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

A Hybrid of Smartphone Camera and Basestation Wide-area Indoor Positioning Method

  • Jiao, Jichao;Deng, Zhongliang;Xu, Lianming;Li, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.723-743
    • /
    • 2016
  • Indoor positioning is considered an enabler for a variety of applications, the demand for an indoor positioning service has also been accelerated. That is because that people spend most of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is an efficient platform for navigation and positioning. However, for high accuracy indoor positioning by using a smartphone, there are two constraints that includes: (1) limited computational and memory resources of smartphone; (2) users' moving in large buildings. To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning information includes horizontal and altitude information for assisting smartphone camera-based positioning. Moreover, a unified representation model of image features under variety of scenarios whose name is FAST-SURF is established for computing the fine location. Finally, an optimization marginalized particle filter is proposed for fusing the positioning information from TC-OFDM and images. The experimental result shows that the wide location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to the WiFi-based and ibeacon-based positioning methods, our method is powerful while being easy to be deployed and optimized.

A Dual-mode Pico-positioning System using Active Aerostatic Coupling

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiro;Yabuya, Makoto;Tazoe, Yoichi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.32-37
    • /
    • 2007
  • This paper proposes a dual-mode ultra precision positioning system for machine tools and measuring machines. The objective was to position a machine table with a picometer order of resolution, i.e., pico-positioning. A twist-roller friction drive (TFD) was used in coarse-mode positioning. The TFD, which was driven by an AC servomotor, is a kind of lead screw in mechanical terms, and several centimeters of machine table movement was controlled with a nanometer order of positioning resolution. To eliminate lateral vibration caused by the TFD, an active aerostatic coupling driven by piezoelectric actuators was inserted between the TFD and the machine table. This active aerostatic coupling was also applied as a feed drive device for fine-mode positioning; in the fine mode, the positioning resolution was 50 pm. Factors influencing pico-positioning, such as how noise from displacement sensors and vibrations in the aerostatic guideway affect positioning resolution, are discussed.

A Novel Picometer Positioning System for Machine Tools and Measuring Machines

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiroh;Tazoe, Yoichi;Kami, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.123-128
    • /
    • 2005
  • A novel tri-mode ultraprecision positioning system for machine tools and measuring machine is proposed. The basic coarse mode uses a Twist-roller Friction Drive (abbr. TFD), and controls several tens of millimeters of the machine-table travel with nanometer order of positioning resolution. The fine mode also utilizes the TFD with a fine adjusting mechanism. The resolution of the fine mode is in the range of sub-nanometer. For realizing picometer positioning, the ultra-fine mode is executed by using an active aerostatic guideway. On the bearing surface of this active guideway, several Active Inherent Restrictors (abbr. AIRs) are embedded for controlling the table position. An AIR unit consists of a piezoelectric actuator having a through hole, one end of the hole on the bearing surface acts as an inherent restrictor. Owing to the aerostatic mechanism of the AIR, the deformation of the piezoelectric actuator in the AIR unit causes much reduced table displacement. Such motion reduction is effective for ultraprecision positioning. Current positioning resolution of the ultra-fine mode is 50pm, however the final goal of the positioning resolution is expected to be in the order of picometer.

  • PDF

Positioning control of a redundant actuator

  • Sasaki, M.;Setta, M.;Satoh, K.;Fujisawa, F.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.605-610
    • /
    • 1994
  • This paper discusses the solution to the precise positioning control problem applied to a simple model of a dual stage or redundant positioner. The dual stage actuator presented here uses a VCM(Voice Coil Motor) as a coarse actuator and a piezoelectric actuator as a fine actuator. By adopting controllers with two-degree-of-freedom and by optimizing H$_{2}$ faster precise tracking can be realized. Experimental and numerical results are presented to demonstrate the control effects.

  • PDF

초정밀 위치 제어를 위한 이중 서보 시스템의 보상기 설계 (Designing Compensators of Dual Servo System For High Precision Positioning)

  • 최현석;송치우;한창수;최태훈;이낙규;나경환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1309-1314
    • /
    • 2003
  • The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, Bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism.

  • PDF

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

GPS 시스템의 C/A 부호 생성 알고리듬의 분석 (Analysis of Coarse Acquisition Code Generation Algorithm in GPS System)

  • 장위;서희종
    • 한국전자통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.61-68
    • /
    • 2017
  • 본 논문에서는 민간용으로 사용되는 GPS 시스템의 C/A 부호(Coarse Acquisition Code)를 연구, 모의실험하고, 분석하였다. 모의실험은 Matlab을 사용하였다. 실제의 GPS 신호를 해석하는 문제를 모의실험을 한 결과, 이 부호 문제의 융통성과 정확성을 확인할 수 있었다. 이의 방법의 응용으로 위성신호를 정확하게 추적할 수 있게 할 수 있고, 위성수신기의 성능을 향상시키는데 도움이 될 것이다.

가변 스텝 마이크로 액츄에이터의 설계 및 구동특성 (Design and Performance Evaluation of Micro Stepping Actuator with a Variable Step Size)

  • Lim, Y.M.;Kim, S.H.;Kwak, Y.K.
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.26-31
    • /
    • 1995
  • A new actuating mechanism suitable for a micro positioning device is developed using piezo-electric elements. The actuator can make a step movement of 0.5 .mu. m up to 3.5 .mu. m. The step size can be adjusted on demand. By repeating this step action, long distance movement is achieved. Precise positioning can be obtained by combining the coarse motion with the maximum step size and fine motion. Two types of fine motion have been proposed for a driving method. Firstly, feedback control bases on PID is applied. The experimental results for the two method are presented.

  • PDF

미세 부품 조작을 위한 탄성힌지 기반 압전소자 구동형 초정밀 머니플레이션 시스템 (A Piezo-driven Fine Manipulation System Based on Flexure Hinges for Manipulating Micro Parts)

  • 최기봉;이재종;김기홍;고국원
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.881-886
    • /
    • 2009
  • This paper presents a manipulation system consisting of a coarse/fine XY positioning system and an out-of-plane manipulator. The object of the system is to conduct tine positioning and manipulation of micro parts. The fine stage and the out-of-plane manipulator have compliant mechanisms with flexure hinges, which are driven by stack-type piezoelectric elements. In the fine stage, the compliant mechanism plays the roles of motion guide and displacement amplification. The out-of-plane manipulator contains three piezo-driven compliant mechanisms for large working range and fine resolution. For large displacement, the compliant mechanism is implemented by a two-step displacement amplification mechanism. The compliant mechanisms are manufactured by wire electro-discharge machining for flexure hinges. Experiments demonstrate that the developed system is applicable to a fine positioning and fine manipulation of micro parts.