• Title/Summary/Keyword: Coarse aggregate

Search Result 659, Processing Time 0.021 seconds

A Study on the Quality Improvement of Recycled Coarse Aggregate by High Speed Rotating Grinder (고속회전형 마쇄기술을 통한 순환골재 품질향상에 관한 연구)

  • Lee, Ki-Won;Yeo, Woon-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.341-348
    • /
    • 2019
  • In this study, we analyzed the problems of existing construction waste shredding technology to diagnose the problems of low quality recycled aggregates and to develop a new mortar peeling technique to produce high-quality recycled coarse aggregate for concrete. The purpose of this study is to verify the effectiveness of mortar peeling technique by doing simulation prior to on-site application and to check the quality properties of recycled coarse aggregate produced by applying a mortar peeling technique. We manufactured and installed High speed Rotating Grinder on-site and analyzed the correlation between mortar adhesion amount, dry density and water absorption rate of recycled coarse aggregate.

High Ductile Fiber Reinforced Concrete with Micro Fibers (마이크로 섬유를 혼입한 고인성 섬유 보강 콘크리트)

  • Shin, Kyung-Joon;Lee, Seong-Cheol;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • In general, high strength and high performance fiber reinforced cement composites exclude coarse aggregates basically in order to have homogeneous distributions of material properties. However, these fiber-reinforced cement mortar without coarse aggregate have a tenancy that the modulus of elasticity is low and the unit weight of cement is high, resulting in low economic efficiency. Therefore, in this study, the development of high ductile fiber - reinforced concrete was conducted, which has the adequate level of coarse aggregate but still retains the high flexural toughness and strength and also has the crack - distributing performance. Experimental study was carried out by using the amount of coarse aggregate as an experimental parameter. The results showed that the best flexural toughness and crack dispersion characteristics was obtained when the coarse aggregate was added at 25% by weight of the fine aggregate to the typical mixtures of high ductile cement mortar. PVA fiber was effective in crack distribution and ductility enhancement, and steel fiber was effective in strengthening flexural strength rather than crack distribution.

Mechanical properties of steel-polypropylene fiber reinforced fully recycled coarse aggregate concrete

  • Weiwei Su;Zongping Chen;Haoyu Liao;Dingyuan Liu;Xingyu Zhou
    • Advances in concrete construction
    • /
    • v.16 no.3
    • /
    • pp.127-139
    • /
    • 2023
  • In this study, the steel fiber and the polypropylene fiber were used to enhance the mechanical properties of fully recycled coarse aggregate concrete. Natural crushed stone was replaced with recycled coarse aggregate at 100% by volume. The steel fiber and polypropylene fiber were used as additive material by incorporating into the mixture. In this test two parameters were considered: (a) steel fiber volume ratio (i.e., 0%, 1%, 1.5%, 2%), (b) polypropylene fiber volume ratio (i.e., 0%, 0.1%, 0.15%, 0.2%). The results showed that compared with no fiber, the integrity of cubes or cylinders mixed with fibers after failure was better. When the volume ratio of steel fiber was 1~2%, the width of mid-span crack after flexural failure was 5~8 mm. In addition, when the volume ratio of polypropylene fiber was 0.15%, with the increase of steel fiber content, the static elastic modulus and toughness of axial compression first increased and then decreased, and the flexural strength increased, with a range of 6.5%~20.3%. Besides, when the volume ratio of steel fiber was 1.5%, with the increase of polypropylene fiber content, the static elastic modulus decreased, with a range of 7.0%~10.5%. The ratio of axial compression toughness first increased and then decreased, with a range of 2.2%~8.7%. The flexural strength decreased, with a range of 2.7%~12.6%. On the other hand, the calculation formula of static elastic modulus and cube compressive strength of fully recycled coarse aggregate with steel-polypropylene fiber was fitted, and the optimal fiber content within the scope of the test were put forward.

A Fudamental Study on Use Possibility as Recycled Aggregate that Use Waste of Plastic Clay (점토소성 폐기물을 이용한 콘크리트용 순환골재로써 활용가능성에 관한 기초적 연구)

  • Cho, Myeong-Ken;Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.2 s.24
    • /
    • pp.93-98
    • /
    • 2007
  • Waste of Plastic that is waste tile and waste interlocking block result, waste tile and waste interlocking block that execute an experiment to foretell practical use possibility availability as recycled aggregate for concrete giving change in the principal parts rate for coarse aggregate recycled aggregate appeared in the world by available thing to coarse aggregate to rate 10% but necessity that present amount used establishing material application standard that is crushed than uniform application standard to receive entropy of re-fresh concrete quality is judged to be.

Characterization of Length change and Free-Thaw Resistance of Recycled Aggregate Concrete (재생골재콘크리트의 길이변화 및 동결융해 저항성에 대한 실험적 특성 고찰)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Kil-Jung;Kim, Tae-Gwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.109-112
    • /
    • 2006
  • Social and environmental pressures draw greater significance on the recycling of the waste. Particularly, waste concrete is particularly crucial among the construction wastes in terms of conservation of natural construction resources as well as disposal crisis. The technology to recycle the waste concrete has been improved. This study has various replacement levels of natural fine aggregate with recycled fine aggregate while coarse aggregate is completely replaced with the recycled coarse aggregate and herein fundamental properties investigated include compressive strength, shrinkage and dynamic modulus of elasticity. As a result, it is anticipated that the recycled aggregate concrete can be successfully applied to structural concrete members provided a proper recycling process, mix design and curing method are practiced.

  • PDF

Influencing Factor on Thermal Coefficient of Concrete due to Aggregate Types (골재종류가 콘크리트의 열팽창계수에 미치는 영향)

  • 김진철;양성철;김남호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.249-254
    • /
    • 2003
  • The thermal coefficient of concrete is measured using dilatometer (AASHTO TP60) and strain gage. Testing parameters such as six different coarse aggregate types, cycles of warming and cooling, specimen shape and measurement types were investigated to evaluate the influencing factors for thermal coefficient of concrete. According to experimental results, the thermal coefficient of concrete made with crushed aggregate showed 9.2 -10.$\mu\varepsilon/^{\circ}C$, , however recycled coarse aggregate classified type II showed a little increasing in comparison with crushed aggregate. The thermal coefficient of concrete made with recycled aggregate was reduced 0.2-0.4$\mu\varepsilon/^{\circ}C$, under temperature cycles. However, specimen shapes were revealed as mainly affecting factors on the thermal coefficient of concrete. Finally the thermal coefficient value determined by the dilatometer device was shown to be similar to the value from PML 60.

  • PDF

Bond capacity with absorption of recycled coarse aggregate in RC beams (순환 굵은 골재 흡수율에 따른 RC보의 부착 성능에 대한 실험적 연구)

  • Lee, Hyun-Ah;Lim, Ji-Youg;Lee, Jung-Mi;Park, Cho-Bum;Ryu, Deck-Huyn;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.97-100
    • /
    • 2008
  • In order to recycled wast concrete which is occurred from demolition of the old building, it is effective that the recycled aggregate used as structural concrete aggregate. For used recycled aggregate with structural concrete, the structural capacity must be confirmed. This Study investigated bond capacity which follows in difference of absorption of the aggregate between rebar and concrete. Test results show that there are not a difference of bond strength and slip behavior according to absorption ratio of natural and recycled coarse aggregate.

  • PDF

Mechanical Performance Evaluation of Concrete with Recycled Coarse Aggregate Selected by Multi-stage Wind Pressure (다단형 풍압처리에 의해 선별된 순환굵은골재 적용 콘크리트의 역학적 성능 평가)

  • Chu, Young-Kyu;Lee, Seung-Tae;Lee, Se-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the mechanical properties of concrete with recycled coarse aggregate (RG) selected by multi-stage wind pressure (MSWP) treatment were evaluated. After evaluating the basic properties of natural and recycled coarse aggregates, the mechanical performance of the recycled coarse aggregates concrete was experimentally investigated. As a result, it was found that the MSWP technique could improve the fundamental properties such as density and water absorption of RG. In addition, the concrete with RG selected by MSWP showed a better mechanical performance, indicating a higher strength values, surface electric resistivity and a lower absorption. Thus, it seems that the MSWP technique can be effective for the production of high-quality RG.

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

A Study on the Strength Properties and Life Cycle Assessment of High Strength Concrete Using Recycled Coarse Aggregate (순환굵은골재를 활용한 콘크리트의 강도 특성 및 전과정 환경영향 평가에 관한 연구)

  • Choi, Won-Young;Lee, Sae-Hyun;Jun, Chan-Soo;Kim, Tae-Hyoung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • Waste concrete accounts for the largest portion of construction waste, and the supply of natural aggregate is unstable. Therefore, importance of using recycled aggregate is emphasized. The purpose of this study is to investigate the mechanical properties of high strength concrete according to the replacement rate of recycled coarse aggregate. For this purpose, the target design compressive strength was set to 40MPa, and the substitution rates of the recycled coarse aggregate were set to 0%, 30%, 60%, and 100%, respectively. Through experiments on the unreinforced concrete and hardened concrete, The validity of the use was confirmed. In addition, LCA method was used to evaluate the environmental impact of recycled aggregates and to compare and analyze the environmental impacts of the aggregates.