• Title/Summary/Keyword: Coal-fired power generation

Search Result 82, Processing Time 0.028 seconds

Economic Analysis of Power Plant Utilities Under $CO_2$ Emission Tax (탄소세(炭素稅)를 고려한 화력발전 설비간의 경제성 평가)

  • Kim, Ji-Soo;Lee, Byoung-Nam;Kim, Tae-Jin
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.237-248
    • /
    • 1997
  • The purpose of this study is to make an economic analysis of power plant utilities by examining electricity generating costs with environmental consideration. Economic growth has caused pollutant emission, and subsequent environmental pollution has been identified as a very real limit to sustainable development. Considering the enormous role of electricity in the national economy, it is thus very important to study the effect of environmental regulations on the electricity sector. Because power utilities need large investments during construction, operation and maintenance, and also require much construction lead time. Economic analysis is the very important process in the electric system expansion planning. In this study, the levelized generation cost method is used in comparing economic analysis of power plant utilities. Among the pollutants discharged of the electricity sector, this study principally deals with the control activities related only to $CO_2$, and $NO_2$, since the control cost of $SO_2$, and TSP (Total Suspended Particulates) is already included in the construction cost of utilities. The cost of electricity generation in a coal-fired power plant is compared with one in an LNG combined cycle power plant. Moreover this study surveys the sensitivity of fuel price, interest rate and carbon tax. In each case, this sensitivity can help to decide which utility is economically justified in the circumstance of environmental regulations.

  • PDF

A Study on Physical Properties of Mortar Mixed with Fly-ash as Functions of Mill Types and Milling Times

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo;Jeong, Jae Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.435-443
    • /
    • 2016
  • Coal ash, a material generated from coal-fired power plants, can be classified as fly ash and bottom ash. The amount of domestic fly ash generation is almost 6.84 million tons per year, while the amount of bottom ash generation is 1.51 million tons. The fly ash is commonly used as a concrete admixture and a subsidiary raw material in cement fabrication process. And some amount of bottom ash is used as a material for embankment and block. However, the recyclable amount of the ash is limited since it could cause deterioration of physical properties. In Korea, the ashes are simply mixed and used as a replacement material for cement. In this study, an attempt was made to mechanically activate the ash by grinding process in order to increase recycling rates of the fly ash. Activated fly ash was prepared by controlling the mill types and the milling times and characteristics of the mortar containing the activated fly ash was analyzed. When the ash was ground by using a vibratory mill, physical properties of the mortar mixed with such fly ash were higher than the mortar mixed with fly ash ground by a planetary mill.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

KEPCO's Movement on Distribution Sector Regarding Renewable Energy Transition of Distribution Network in Korea (국내 배전망 정책 및 환경변화를 고려한 배전부분 발전방향 연구)

  • Hyun, Seung-Yoon;Kim, Chang-Hwan;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.93-99
    • /
    • 2021
  • The government has proposed a mission to enhance intelligent power networks, decrease coal-fired generation, expand distributed energy resources, and promote energy prosumer into the distribution network in Korea. Installation cost of facility expansion to guaranteed interconnection with small distributed energy resources increases dramatically on KEPCO's distribution sector. And it is hard to withdraw in time. In addition, there are explicit research is required to meet the reliability on grid corresponding to the increase of distributed power. Infrastructure support for accommodating energy prosumer is also needed. Therefore, KEPCO is pushing transition to DSO by expanding distribution management scope and changing its roles. In addition, KEPCO is proactively preparing for integrated operation between distribution network and existing distributed power which is accommodated passively. KEPCO is also trying to accept multiple network users, e.g. building platforms, to manage a data and promote new markets. In the long term, transition to DSO will achieve saving investment costs for accommodating distributed sources and maintaining stable electrical quality. And it will be possible to create new business model using the platform to secure revenue.

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.

The Effect of Supply Patterns of Overfire Air on Generation of NOX and CO in a Wood pellet Fired Boiler (우드펠릿 보일러에서 2단 연소용 공기 공급방식이 질소산화물 및 일산화탄소 발생에 미치는 영향)

  • Jung, Kwang-sung;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.3
    • /
    • pp.35-41
    • /
    • 2019
  • In this study, we investigated the effect of the generation of NOx and CO by adjusting the overfire air supply position and ratio using the boiler that was converted from coal burning to wood pellet boiler. When the amount of the overfire air is relatively increased, the amount of NOx is slightly decreased but CO is sharply decreased when burning at low excess air ratio (1.10) that is due to a small fuel particle size. However, NOx slightly increased when burning at high excess air ratio (1.33) due to the large fuel size, but CO was hardly affected. Also, When the amount of overfire air was same, The more supply position was concentrated to upper portion of the main combustor, the more NOx and CO was lowered. And in case of the excess air ratio was high, the generation of NOx and CO I can see that it keeps the level irrelevant to the amount of air for the second stage combustion.

Impact of Carbon Costs on Wholesale Electricity Market (탄소비용이 CBP전력시장에 미치는 영향)

  • Kim, Wook;Park, Jong-Bae;Lee, Joo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.700-706
    • /
    • 2010
  • Carbon costs, either in the form of a carbon tax or through permit prices in an emissions trading scheme, would ultimately be reflected in higher electricity prices. This price "pass-through" is very critical to the effective design of new policies to curb the amount of carbon emissions. This paper sets out in a structured way the factors that determine price pass-through and how carbon costs would impact on the electricity market and the existing coal-fired power plants. It is shown that pass-through can vary drastically if the underlying dispatch potential of generators varies significantly across alternative emissions reduction scenarios. It can also vary depending on the availability of competing cleaner forms of generation. Pass-through as a measure of business performance is therefore hard to generalize across different circumstances and should be interpreted carefully.

A mechanism of IPP(Coal Fired)'s optimal power generation according to the introduction of RPS (Renewable Portfolio Standard) (RPS 제도 도입에 따른 민간 석탄 발전소의 최적 발전량 감소 메커니즘 연구)

  • Ha, Sun-Woo;Lee, Sang-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.455-456
    • /
    • 2015
  • 2010년 민간 기업의 1,000 MW 규모 석탄 화력 발전소가 전력수급 기본계획에 최초로 반영된 이래로 이들이 해결해야 하는 가장 큰 난제는 RPS 제도 도입과 그에 따른 REC 공급의무이다. 만약 민간 석탄 발전소들이 REC 공급의무를 불이행하게 된다면, 막대한 과징금이 부과되기 때문에 이들의 전력생산 비용함수는 이를 반영하여 수정되어야 한다. 더 나아가 REC 공급의무는 발전량에 따라 결정되기 때문에, 민간 발전사업자가 자신의 REC 공급의무 이행능력이 부족하다고 판단할 경우 자체적으로 발전량을 감축하여 과징금을 낮추는 전략을 선택할 수 있다. 본 논문에서는 RPS 제도 도입에 따른 민간 석탄 발전소의 비용함수 변화와 이윤(수익) 극대화를 위하여 발전량을 감소시키는 메커니즘을 분석하였다.

  • PDF

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE) (전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출)

  • Park, Sungho;Cha, Jaemin;Kim, Joonyoung;Shin, Junguk;Yeom, Choongsub
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

Effect of Aging Time on Creep Property of Cast Haynes 282 Superalloy (초내열합금 Haynes 282 주조합금의 크리프강도에 미치는 시효처리의 영향)

  • Kim, Young-Ju;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • Ni-base superalloy Haynes 282 was developed as a gas turbine material for use in the ultra-super-critical stage (USC) of next-generation coal-fired power plants. Temperatures in the USC stage exceed $700^{\circ}C$ during operation. In spite of its important role Haynes 282 in increasing the performance of high-pressure turbines, as a result of its high-temperature capability, there is little information on the microstructure, deformation mechanism, or mechanical properties of the cast condition of this alloy. The aim of present study is to examine the creep properties of cast alloy and compare with wrought alloy. The ${\gamma}^{\prime}-precipitates$ were coarsen with the increase of aging time ranging from 8 to 48 hrs. A creep test performed at $750^{\circ}C$ showed faster minimum creep rate and shorter rupture lifetime with the aging time. A creep test performed showed only a slight difference in the rupture life between cast and wrought products. Based on the creep test results, the deformation mechanism is discussed using fractographs.