• Title/Summary/Keyword: Coal-Fired Power Plant

Search Result 264, Processing Time 0.025 seconds

Effect of Biomass Co-firing Ratio on Operating Factors of Pulverizer in 500 MW Coal-fired Power Plant (500 MW 석탄화력 발전소에서 바이오매스 혼소율이 미분기 운전인자에 미치는 영향)

  • Geum, Jun Ho;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.28-40
    • /
    • 2022
  • As the proportion of renewable energy generation is expected to increase, public power generation businesses need to actively consider implementing the expansion of biomass mixing, In this study, the biomass co-firing rate is being changed from 0wt.% to 5.0wt.% at 500MW coal-fired power plant, measuring the major operation characteristics of the pulverizer. First, the composition analysis and grinding characteristics of lignocelluosic biomass were examined, and the effect of volume increase on dirrerential bowl pressure difference, motor current, coal spillage, outlet temperature, and internal fire count was analyzed. As the co-firing rate increased, it was confirmed that the difference in the differential bowl pressure, motor current, and coal spillage treated increased, and the outlet temperature was minimal. The number of internal fires is difficult to find a clear correlation, but it has been confirmed that it is highly likely to occur in combination with other driving factors.

  • PDF

Empirical Study on water wall tube corrosion mechanism for Tangential type coal fired power plant boiler (석탄화력발전소 보일러의 수냉벽튜브 부식 메카니즘에 대한 실증적 고찰)

  • Baek, Sehyun;Kim, HyunHee;Park, Hoyoung;Ko, SungHo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • In this study, boiler tube thickness measurement and numerical analysis were conducted for standard 500MW coal-fired power plant in order to research the mechanism of tangential-fired boiler corrosion empirically. The most dominant corrosion mechanism of tangential-fired boiler waterwall was corrosion by sulfur contained in the unburned carbon. And the secondary mechanism was $H_2S$ gas corrosion at localized reducing atmosphere. It is required to decrease the air-stage combustion operation in order to mitigate the waterwall tube corrosion. Also stringent coal pulverization quality control and reinforcing work for corrosion susceptible area such as anti-corrosion coatings is required

Estimation of the Project Cost for a Coal-fired Power Plant using Stochastic Simulation (확률적 모의실험법을 이용한 석탄화력발전소의 건설사업비 추정)

  • Han, Hyoung-Gi;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.4
    • /
    • pp.45-54
    • /
    • 2012
  • Estimated project cost and executed sensitivity analysis for domestic 500 MW coal-fired power plants with monte carlo simulation. As a result of research, the basis of constant price in December, 2011 and 95% level of confidence, the project cost in case of not having adjacent power plant was 1,870 billion won to 2,330 billion won and the project cost in case of having adjacent power plant was 1,240 billion won to 1,590 billion won. In case of not having adjacent power plant is sensitive to civil construction cost but the other case is sensitive to material cost.

  • PDF

A Study on the Measurement of Whole-Body Vibration in Some Coal-fired Power Plant Workers

  • Heo, Seung-Moo;Lee, Yun Keun;Park, Hee Sok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.341-344
    • /
    • 2013
  • Objective: This study measured and evaluated the characteristics of the whole body vibration experienced in some coal-fired power plant in Korea. Background: Few studies have been carried out in Korea about the effects of whole body vibration of power plants on humans. Method: The evaluation scheme suggested by the Law of Noise and Vibration Control was applied. Results: It was found that 28.9% of total measurement points were above the limit suggested by the law. Conclusion: Many workers are exposed to whole body vibration during their job completion, and more efforts should be applied to prevention and control of the plat vibration.

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Evaluation of Occupational Exposure to Noise and Heat stress in Coal-fired Power Plants (석탄화력발전소 작업자의 소음과 온열 스트레스에 대한 노출 평가)

  • Jiwoon Kwon;Kwang-Myong Jang;Sungho Kim;Se-Dong Kim;Miyeon Jang;Jiwon Ro;Seunghyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.464-470
    • /
    • 2023
  • Objectives: This study evaluated occupational exposures to noise and heat stress during routine non-outage works in three coal-fired power plants in the Republic of Korea. Methods: The data were collected during the summer of 2020. Full shift noise exposure of 52 workers were measured using noise dosimeters. Heat stress of 16 worksites were measured for 70 minutes using wet-bulb globe temperature monitors. Results: The noise dosimetry results revealed time-weighted averages that ranged from 47.5 to 88.9 dBA. 2 out of 52 noise measurements exceeded 85 dBA. Based on the arithmetic mean, the coal service group showed the highest level at 80.2 dBA by job tasks. Noise exposures exceeding 85 dBA were measured in the coal service and plant operator group. Heat stress index measurements ranged from 20.3℃ to 37.2℃. 1 out of 9 indices measured in coal facilities and 4 out of 7 indices measured in boiler house exceeded 1 hour TWA during moderate work. Heat stress indices measured from boiler houses were significantly higher than those measured from coal equipment. Conclusions: The results show that overexposure to noise and heat stress may be encountered during routine non-outage work activities in coal-fired power plants. Appropriate actions should be taken to reduce future health outcome from occupational exposure to noise and heat stress in the industry.

Analysis of the Influence of Post-Combustion $CO_2$ Capture on the Performance of Fossil Power Plants (후처리를 이용한 $CO_2$ 포집이 화력 발전설비 성능에 미치는 영향 해석)

  • Tak, Sang-Hyun;Kim, Tong-Seop;Chang, Young-Soo;Lee, Dae-Young;Kim, Min-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.545-552
    • /
    • 2010
  • Research and development efforts to reduce $CO_2$ emission are in progress to cope with global warming. $CO_2$ emission from fossil fuel fired power plants is a major greenhouse gas source and the post-combustion $CO_2$ capture is considered as a short or medium term option to reduce $CO_2$ emissions. In this study, the application of the post-combustion $CO_2$ capture system, which is based on chemical absorption and stripping processes, to typical fossil fuel fired power plants was investigated. A coal fired plant and a natural gas fired combined cycle plant were selected. Performance of the MEA-based $CO_2$ capture system combined with power plants was analyzed and overall plant performance including the energy consumption of the $CO_2$ capture process was investigated.

Analysis of dew point and corrosion resistance for power plant economizer tube with exhaust gas temperature and sulfuric acid concentration (발전소 절탄기 튜브의 배기가스 온도와 황산 농도에 따른 노점 및 내식성 분석)

  • Choi, Jae-Hoon;Lee, Seung-Jun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.433-440
    • /
    • 2022
  • Environmental pollution caused by power plant exhaust gas is highlighted and eco-friendly regulations are being strengthened. However, due to the abundant reserves and low prices of coal, still the most used for power generation in the world. Therefore, flexible operation of coal-fired power plants to reduce emissions has become an inevitable option. However, lowering the output increases the possibility of acid dew point corrosion as the exhaust gas temperature decreases. The dew point corrosion occurs when condensable gases such as SO3, HCl, NO2 and H2O cools below the saturation temperature. SO3 is already well known to cause severe low- temperature corrosion in coal-fired power plants. Therefore, this study aims to prevent damage that may occur during operation by analyzing the dew point and corrosion resistance with exhaust gas temperature and sulfuric acid concentration of the power plant economizer tube.

Evaluation of Some Rare Metals and Rare Earth Metals Contained in Coal Ash of Coal-fired Power Plants in Korea (국내 석탄화력발전소 석탄회 중 희유금속 가치 평가)

  • Park, Seok-Un;Kim, Jae-Kwan;Seo, Yeon-Seok;Hong, Jun-Seok;Lee, Hyoung-Beom;Lee, Hyun-Dong
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • The content distributions of some rare metals and rare earthe metals in coal ash (fly ash, bottom ash and pond ash) and leachate from coal-fired power plants were investigated. In case of Yttrium (Y) and Neodymium (Nd) which were strategic critical elements, their contents were ranged from about 23 ~ 75 mg/kg and it is shown they are worth to be developed for the recovery and separation method. Considering the annual amount of fly ash and bottom ash and pond ash, coal-fired power plants have great value of about 1,670 billion KRW and it is regards they are worthy as urban mines.

Capacitance Characteristics of Fly Ash for Monitoring the Unburned Carbon Contained in Fly Ash (석탄회 미연탄소함량 동시측정을 위한 석탄회 정전용량 분석에 관한 연구)

  • 이재근;김장우;구재현;신진혁;김성찬;신희수;황유진
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • The carbon-in-ash system for simultaneously monitoring the unburned carbon in fly ash produced in a coal-fired power plan is designed and evaluated using the domestic fly ash produced in the coal-fired power plant. Real time monitoring is very important to control the combustion of the boiler in the coal-fired power plant and the purification system for fly ash recycling. The carbon-in-ash system based on the capacitance measurement consists of a LCR meter, a duct collector and an electrode cell. The capacitance of fly ash increases linearly with increasing fly ash carbon contents. The water content in fly ash plays an important role on the ash capacitance. The empirical equation for predicting the content of unburned carbon in fly ash produced in the domestic Boryung, Hadong and Samchenpo coal-fired power plants can be derived in the range of carbon content 0-20%.