• Title/Summary/Keyword: Coal-Ash

Search Result 708, Processing Time 0.026 seconds

Characteristics of particle mixing and detection of poor fluidization in a fluidized bed ash cooler (유동층 저회냉각기에서의 입자 혼합특성과 비유동 진단)

  • Kim, D.W.;Lee, J.M.;Kim, J.S.;Kim, J.J.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.231-237
    • /
    • 2005
  • Interruption of good fluidization in a fluidized bed ash cooler(FBAC) for discharging bed materials such as sand or coal ash particles from the CFB combustor is frequently happened because of agglomeration of the particles in the bed. This unstable operation may, in the worst case, result in an unscheduled boiler shut down. In this study, we examined the operation problems of the FBAC of Tonghae CFB boiler and studied and introduced the simple detection and solution techniques with analyzing the mixing property and the occurrence of defluidization in a simulated fluidized bed ash cooler system (0.5m-H x 0.5m-W x 1.0m-L). The bridge of the large particles at the bed surface could be observed, and this caused to form the defluidization area at the entrance of the FBAC. The defluidization was affected not only by airflow rates but also by the particles discharging rates as well as particle size distribution in the FBAC. The local defluidization could be detected by analysis of the accumulated standard deviation error at a given period of time. Also, the regulation of the overall or local airflow rate made clearing up the local defluidization possible.

  • PDF

An Experimental Study on the Strength Development of Using Fly-Ash 100% Mortar for Binder (결합재로서 플라이애쉬 100% 사용 모르타르의 강도발현에 관한 실험적 연구)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Ahn, Ki-Hong;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.721-724
    • /
    • 2008
  • Recently, by-products for example of fly-ash, blast-furnace slag and etc are generally using in concrete. However a mount of by-products are mostly dropped into the land and sea. Expecially it is necessary to manage against London Dumping Convention which is prohibited for throwing the by-product into the sea. The purpose of this study is for the active use of the fly ash, which is a by-product of the combustion pulverizes coal thermal power plants, to compensate for the lack of landfill and for conservation of energy, by using fly ash as the supplementary cementitious material, and to prove its possibility as the related products of the cements.

  • PDF

Fabrication of a solid catalyst using coal fly ash and its utilization for producing biodiesel

  • Go, Young Wook;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.324-330
    • /
    • 2019
  • To recycle raw fly ash (RFA), a waste from thermal power plants, it was used to prepare solid catalysts which have many advantages compared with homogenous catalysts. When biodiesel was produced from soybean oil using RFA, only 1.2% of biodiesel conversion was obtained. A metal hydroxide, NaOH, KOH or $Ca(OH)_2$, was mixed with the acid-treated fly ash (ATFA), and the mixture was calcined at $700^{\circ}C$ for 3 h to prepare the solid catalyst. The solid catalyst prepared by mixing ATFA with NaOH, designated as SC-Na, showed a better performance than those prepared by mixing ATFA with KOH or $Ca(OH)_2$, respectively. The optimal mass ratio of ATFA with NaOH was 1:3, at which the proportion of $Na_2O$ increased to 60.2% in SC-Na, and 97.8% of biodiesel conversion was achieved under optimal reaction conditions (2 w% SC-Na relative to oil and 5 mL-methanol/g-oil at $50^{\circ}C$ for 4 h). Finally, a batch operation was repeatedly carried out to test the feasibility of reusing the solid catalyst, and more than 96% biodiesel conversion was stably achieved for the third round of operations. This study shows that RFA was successfully recycled to solid catalysts through a simple preparation method, and the solid catalyst was reused for the production of biodiesel with high conversion.

An experimental investigation on the mechanical properties of steel fiber reinforced geopolymer concrete

  • Murali, Kallempudi;Meena, T.
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.499-505
    • /
    • 2021
  • Geopolymer binders fascinate the attention of researchers as a replacement to cement binder in conventional concrete. One-ton production of cement releases one ton of carbon-dioxide in the atmosphere. In the replacement of cement by geopolymer material, there are two advantages: one is the reduction of CO2 in the atmosphere, second is the utilization of Fly ash and Ground granulated blast furnace slag (GGBFS) are by-products from coal and steel industries. This paper focuses on the mechanical properties of steel fiber reinforced geopolymer concrete. The framework considered in this research work is geopolymer source (Fly ash, GGBFS and crimped steel fibre) and alkaline activator which consists of NaOH and Na2SiO3 of molarity 8M. Here the Na2SiO3 / NaOH ratio was taken as 2.5. The variables considered in this experimental work include Binder content (360,420 and 450 kg/m3), the proportion of Fly ash and GGBS (70-30, 60-40 and 50-50) for three different grades of Geopolymer concrete (GPC) GPC 20, GPC 40 and GPC 60. The percentage of crimped steel fibres was varied as 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. Generally, the inclusion of steel fibres increases the flexural and split tensile strength of Geopolymer concrete. The optimum dosage of steel fibres was found to be 0.4% (by volume fraction).

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Performance Analysis of Shell Coal Gasification Combined Cycle systems (Shell 석탄가스화 복합발전 시스템의 성능해석 연구)

  • Kim, Jong-Jin;Park, Moung-Ho;Song, Kyu-So;Cho, Sang-Ki;Seo, Seok-Bin;Kim, Chong-Young
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.104-113
    • /
    • 1997
  • This study aims to develop an analysis model using a commercial process simulator-ASPEN PLUS for an IGCC (Integrated Gasification Combined Cycle) system consisting a dry coal feeding, oxygen-blown entrained gasification process by Shell, a low temperature gas clean up process, a General Electric MS7001FA gas turbine, a three pressure, natural recirculation heat recovery steam generator, a regenerative, condensing steam turbine and a cryogenic air separation unit. The comparison between those results of this study and reference one done by other engineer at design conditions shows consistency which means the soundness of this model. The greater moisture contents in Illinois#6 coal causes decreasing gasifier temperature and the greater ash and sulfur content hurt system efficiency due to increased heat loss. As the results of sensitivity analysis using developed model for the parameters of gasifier operating pressure, steam/coal ratio and oxygen/coal ratio, the gasifier temperature increases while combustible gases (CO+H2) decreases throughout the pressure going up. In the steam/coal ratio analysis, when the feeding steam increases the maximum combustible gas generation point moves to lower oxygen/coal ratio feeding condition. Finally, for the oxygen/coal ratio analysis, it shows oxygen/coal ratio 0.77 as a optimum operating condition at steam/coal feeding ratio 0.2.

  • PDF

Application and Verification of Cold Air Velocity Technique for Solving Tube Ash Erosion Problem in PC Boilers (석탄화력발전소 보일러 튜브 마모 문제에 관한 저온공기 속도 측정법 적용 및 검증)

  • Yoo, Ki-Soo;Jeong, Kwon-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.663-668
    • /
    • 2012
  • Fly ash erosion is a leading cause of boiler tube failure in PC boilers. Therefore, shields or baffle plates are installed in specific areas to mitigate fly ash erosion and prevent boiler tube failure. However, the tube failure problems caused by fly ash erosion cannot be eliminated with this solution alone, because each PC boiler has a different flue-gas flow pattern and erosion can become severe in unexpected zones. This problem is caused by an asymmetric internal flow velocity and local growth of the flue gas velocity. For these reasons, clearly defining the flow pattern in PC boilers is important for solving the problem of tube failure caused by fly ash erosion. For this purpose, the cold air velocity technique (CAVT) can be applied to the fly ash erosion problem. In this study, CAVT was carried out on the Hadong #2 PC boiler and the feasibility of application of CAVT to conventional PC boilers was validated.

Circularity Measurenment of Fly Ash Using Digital Image Processing (디지털 이미지 분석을 이용한 Fly Ash의 원형지수 측정)

  • Lee, Seung-Heun;Kim, Hong-Joo;Bae, Soon-Muk;Lee, Won-Jun;Sakai, Etsuo;Daimon, Masaki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.735-741
    • /
    • 2002
  • This paper investigates circularity of fly ashes using the digital image processing. Fly ashes directly collect from electrostatic precipitator when the load of conditions of boiler are changed at a coal-fired power plant. Circularity measurement can be accomplished in five steps: ① image acquisition, ② grey image processing, ③ detection the component to measure ④ binary image processing ⑤ feature measurement. The mean circularity of fly ashes is in the range of 0.78 to 0.83. fly ashes collected from the same hopper has similar circularity regardless of the load of boiler and circularity increases as going from the 1st hopper to 3rd one, namely as particle size become finer.

Attrition Characteristics of Korean Antracite Ash in Fluidized Bed Combustors (유동층 연소로에서 국내탄 회재의 마모 특성)

  • Lee, See Hoon;Kim, Sang Done;Kim, Jae Sung;Lee, Jong Min
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.547-551
    • /
    • 2006
  • In the reactor following the American standard test method (ASTM) D5757-95 and lab-scale fluidized bed combustor, the attrition characteristics of sand and ash of Korean anthracite were investigated. The attrition characteristics, such as particle size distribution of fly ash, attrition rate, and attrition ratio etc, were studied with variation of gas velocities. The particle attrition of ash was more active than sand which was generally used as a fluidized material and also the attrition index of ash taken by ASTM D5757-95 was 5 times higher than that of sand. The formation of fine particles continuously occurred due to particle attrition with increasing gas velocities. The following equation has been suggested for attrition rate of ash. $$\frac{dW}{dt}=-3.18{\times}10^{-7}(U-U_{mf})W$$.

Bloating mechanism for coal ash with iron oxide (철분이 많이 함유된 석탄회의 발포거동)

  • Lee, Ki Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study was to figure out the impacts of iron oxide types and dosages to bloating when producing artificial lightweight aggregates by utilization of recycled resources such as bottom-ash, reject-ash and dredgedsoil. In order to figure out chemical characteristics of raw materials, XRD and XRF analyses were performed. 50 wt% of dredged-soil, 15 wt% of bottom-ash and 35wt.% of reject-ash were mixed, then the amount of iron oxide was varied at 5 to 30 wt% with intervals of 5 wt% with $Fe_2O_3$ and $Fe_3O_4$ respectively. As molded aggregates were sintered by rapid sintering in intervals of $40^{\circ}C$ from $1060^{\circ}C$ to $1180^{\circ}C$, specific gravity and water absorption were measured. As a result, the artificial lightweight aggregate with iron oxide of 10~15 vol% showed the lowest specific gravity, and it was identified that the more iron oxide vol% increases, the more specific gravity increases because of liquid phase sintering.