• 제목/요약/키워드: Coal- Biomass co-firing

검색결과 26건 처리시간 0.023초

석탄-바이오매스 혼소에 따른 슈퍼히터 튜브 고온 부식 특성 연구 (High-Temperature Corrosion Characterization for Super-Heater Tube under Coal and Biomass Co-firing Conditions)

  • 박석균;목진성;정진무;오종현;최석천
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.79-86
    • /
    • 2018
  • Many countries have conducted extensive studies for biomass co-firing to enhance the durability of reactor on high-temperature corrosion. However, due to the complicated mechanisms of biomass co-firing, there have been limitations in accurately determining the current state of corrosion and predicting the potential risk of corrosion of power plant. In order to solve this issue, this study introduced Lab-scale corrosion system to analyze the corrosion characteristics of the A213 T91 material under the biomass co-firing conditions. The corrosion status of the samples was characterized using SEM/EDS analysis and mass loss measurement according to various biomass co-firing conditions such as corrosion temperature, $SO_2$ concentration, and corrosion time. As a result, the corrosion severity of A213 T91 material was gradually increased with the increase of $SO_2$ concentration in the reactor. When $SO_2$ concentration was changed from 0 ppm to 500 ppm, both corrosion severity and oxide layer thickness were proportionally increased by 15% and 130%, respectively. The minimum corrosion was observed when the corrosion temperature was $450^{\circ}C$. As the temperature was increased up to $650^{\circ}C$, the faster corrosion behavior of A213 T91 was observed. A213 T91 was observed to be more severely corroded by the effect of chlorine, resulting in faster corrosion rate and thicker oxide layer. Interestingly, corrosion resistance of A213 T91 tended to gradually decrease rather than increases as the oxide layer was formed. The results of this study is expected to provide necessary research data on boiler corrosion in biomass co-firing power plants.

석탄화력에서 목질계 바이오매스의 혼소시 CDM 사업 연구 (The Study on CDM Project of Ligneous Biomass Co-fired in Coal Thermal Power Plant)

  • 정남영;김래현
    • 에너지공학
    • /
    • 제20권3호
    • /
    • pp.231-235
    • /
    • 2011
  • 목질계 등 유기성 바이오매스는 탄소중립(Carbon Neutral) 특성으로 인해 이산화탄소 배출이 없고, 기존의 석탄화력 혼소시에도 별도의 설비개조 없이 연료로 사용이 가능하며 연료 수급에도 안정성을 유지할 수 있다. 이러한 목질계 바이오매스를 석탄화력발전소에서 혼소하여 생산한 전력을 계통망에 공급하는 사업에 대해 CDM사업을 추진할 경우, AM0085 방법론을 적용할 수 있으며, kWh당 연료비도 유연탄보다 상대적으로 높아 경제적 추가성 입증이 가능하다. 그리고 바이오매스의 탄소중립 특성으로 목질계 바이오매스를 이용하여 생산 한 전력은 석탄을 통해 생산한 동일한 전력에 비해 1 MWh 당 $0.6737tCO_2$의 온실가스 저감효과가 존재한다.

미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구 (Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal)

  • 박지선;이재욱;이용운;이영재;양원;채태영;김재관
    • 청정기술
    • /
    • 제29권3호
    • /
    • pp.193-199
    • /
    • 2023
  • 국내외 석탄화력발전소에서 REC(Renewable energy certificate) 확보를 위해 혼소되고 있는 바이오매스는 기존의 목질계 바이오매스인 우드 펠릿에서부터 최근 들어 초본계 바이오매스로의 확대가 진행되고 있다. 초본계 바이오매스의 경우 목질계 바이오매스에 비해 K, Na 등의 알칼리계 금속 함량이 더 높아 회융점이 더 낮고, 이 때문에 보일러 튜브에의 회 점착을 늘려 보일러의 효율을 떨어뜨리는 원인이 되고 있다. 본 연구에서는 초본계 바이오매스 연소시 회 융점을 높여 회 점착을 감소시키기 위해 많이 사용되고 있는 첨가제인 카올린(kaolin)이 석탄-바이오매스 혼소시 미치는 영향을 열화학 평형 계산을 통해 분석하고자 하였다. 이전 연구에서 수행된 80 kWth 급 미분탄 - 바이오매스 혼소 실험에서 카올린을 사용하는 경우 오히려 회 점착량이 늘어나는 원인을 해석을 통해 분석하였으며, 해석을 수행한 결과 석탄에 많이 포함되어 있는 Al2O3 때문에, Al-Si 계열 첨가제인 카올린 투입시 aluminosilicate 화합물의 생성이 촉진되어 용융점이 낮은 mullite가 많이 형성, 카올린을 더 사용할수록 슬래그 생성이 증가하는 것을 확인하였다. 추가적으로 바이오매스 혼소율을 0~100%까지 10% 간격으로 증가시켜가면서 해석을 수행하였으며, 그 결과 비선형적인 액상 슬래그 생성 특성을 확인하였다. 결과적으로는 바이오매스 혼소율 50~60% 조건일 때 가장 적은 량의 액상 슬래그가 생성됨을 파악하였다. phase diagram을 분석한 결과, 고용융점 화합물(leucite, feldspar)이 해당 조건에서 가장 많이 생성되는 것을 확인하였다.

FERPM을 적용한 바이오매스 촤의 전산해석적 연구 (Numerical Study of Biomass Char Applying FERPM)

  • 오현석;김강민;김경민;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.122-131
    • /
    • 2020
  • To reduce emissions from coal-fired power plants, researchers focusing on coal and biomass co-firing technology. Biomass, with its carbon-neutral nature and lower quantities of nitrogen and sulfur compared with coals, has a positive impact on coal-fired power generation. Many studies on the combustion of biomass have been conducted, but the study on the combustion characteristics of biomass char is limited. FERPM predicts char combustion characteristics with high accuracy by introducing experimental data-based parameters of biomass char and has not yet been applied in numerical simulation. In this study, FERPM is numerically applied to char combustion of wood pellets representing wood-based biomass and the combustion characteristics are compared with the kinetic/diffusion limited model, intrinsic model, and diffusion limited model.

오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 - (Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass -)

  • 성용주;김철환;이지영;조후승;남혜경;박형훈;권솔;김세빈
    • 펄프종이기술
    • /
    • 제47권1호
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.

바이오매스 전처리 기술에 따른 혼소 특성에 관한 실험적 연구 (The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends)

  • 김종호;박경훈;김경민;박경원;정태용;이영주;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.81-89
    • /
    • 2018
  • Fuel blend technique is one of the most effective way of using biomass to replace the coal. Many studies on combustion characteristics with coal and biomass blends have been conducted. In this study, char reactivity and emission characteristics of coal (Suek) and biomass (EFB) blends has been investigated by TGA and DTF to evaluate the applicability of the pre-treated (torrefaction, ash removal technology) EFB to pulverized coal boiler. In all blending cases, char reactivity improved as the blending ratio increases (10, 20, and 30%), especially torrefied EFB blended at 30%. Also, unburned carbon decreased as the blending ratio increases in all types of EFB. NOx emission showed the increase and decrease characteristics according to the content of fuel-N of raw EFB and torrefied EFB. But the amount of NOx emission at ashless EFB blends is greater than that of Suek despite of lower fuel-N. It indicated that co-firing effect of using the pretreatment biomass fuel is relatively better than those of the untreated biomass fuel about char reactivity and emission characteristics.

바이오매스의 연소 성능과 회재 특성 (Biomass Combustion Performance and Ash Characteristics)

  • 문지홍;김광수;정재용;박민선;박은혜;윤정준;황정호;이은도
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.227-229
    • /
    • 2012
  • Diversification of combustion fuel is the demands of the times and biomass is the most attractive option since it can contribute to the prevention of global warming at the same time. Due to the national renewable obligation, generally called Renewable Portfolio Standard (RPS), many power companies are considering direct combustion of biomass or co-firing with coal. In order to use biomass as a fuel, informations of its combustion characteristics and ash related problems should be investigated. In this study, combustion performance of biomass was assessed in a bubbling fluidized bed combustor, and ash characteristics of various biomass fuels were studied with standard test method.

  • PDF

바이오매스 에너지화: 청정 연소를 위한 신재생 연료 생산 공정 (Biomass to Energy: Renewable Fuel Production Processes for Clean Combustion)

  • 정재용;김영두;양원;이은도;정수화;방병열;문지홍;황정호;장원석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.285-285
    • /
    • 2015
  • Utilization of biomass as a substitute fuel for conventional energy systems have been grown larger everyday in the world. In particular, co-firing of biomass in a large coal power plant are common in Korea after the introduction of RPS since 2012, and the application of biomass-derived fuel is now spreading to district heating and power, industrial energy supply, and transportation sectors. For biomass to energy, appropriate conversion process is needed to satisfy the fuel requirements of a specific energy system. In this study, various kinds of thermochemical conversion technologies will be presented for renewable fuel productions from biomass.

  • PDF