Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.1.122

Numerical Study of Biomass Char Applying FERPM  

OH, HYUN-SUK (School of Mechanical Engineering, Pusan National University)
KIM, KANG-MIN (School of Mechanical Engineering, Pusan National University)
KIM, GYEONG-MIN (School of Mechanical Engineering, Pusan National University)
JEON, CHUNG-HWAN (School of Mechanical Engineering, Pusan National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.1, 2020 , pp. 122-131 More about this Journal
Abstract
To reduce emissions from coal-fired power plants, researchers focusing on coal and biomass co-firing technology. Biomass, with its carbon-neutral nature and lower quantities of nitrogen and sulfur compared with coals, has a positive impact on coal-fired power generation. Many studies on the combustion of biomass have been conducted, but the study on the combustion characteristics of biomass char is limited. FERPM predicts char combustion characteristics with high accuracy by introducing experimental data-based parameters of biomass char and has not yet been applied in numerical simulation. In this study, FERPM is numerically applied to char combustion of wood pellets representing wood-based biomass and the combustion characteristics are compared with the kinetic/diffusion limited model, intrinsic model, and diffusion limited model.
Keywords
Biomass; CFD; Char combustion model; DTF; FERPM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Madejski, "Thermal power plants : new trends and recent developments", IntechOpen, Poland, 2018, pp. 1-11.
2 S. R. Gubba, D. B. Ingham, K. J. Larsen, L. Ma, M. Pourkashanian, H. Z. Tan, A. Williams, and H. Zhou, "Numerical modelling of the co-firing of pulverised coal and straw in a 300 MWe tangentially fired boiler", Fuel Processing Technology, Vol. 104, 2012, pp. 181-188, doi: https://doi.org/10.1016/j.fuproc.2012.05.011.   DOI
3 E. Houshfar, O. Skreiberg, D. Todorovic, A. Skreiberg, T. Lovas, A. Jovovic, and L. Sorum, "$NO_x$ emission reduction by staged combustion in grate combustion of biomass fuels and fuel mixtures", Fuel, Vol. 98, 2012, pp. 29-40, doi: https://doi.org/10.1016/j.fuel.2012.03.044.   DOI
4 M. Sami, K. Annamalai, M. Wooldridge, "Co-firing of coal and biomass fuel blends", Prog. Energy Combust. Sci., Vol. 27, No. 2, 2001, pp. 171-214, doi: https://doi.org/10.1016/S0360-1285(00)00020-4.   DOI
5 K. Savolainen, "Co-firing of biomass in coal-fired utility boilers", Applied Energy, Vol. 74, No. 3-4, 2003, pp. 369-381, doi: https://doi.org/10.1016/S0306-2619(02)00193-9.   DOI
6 R. Perez-Jeldres, P. Cornejo, M. Flores, A. Gordon, and X. Garcia, "A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: synergistic effects and emissions profiles", Energy, Vol. 120, 2017, pp. 663-674, doi: https://doi.org/10.1016/j.energy.2016.11.116.   DOI
7 A. A. Bhuiyan and J. Naser, "CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large scale power plant", Fuel, Vol. 159, 2015, pp. 150-168, doi: https://doi.org/10.1016/j.fuel.2015.06.058.   DOI
8 A. I. Moreno, R. Font, and J. A. Conesa, "Combustion of furniture wood waste and solid wood: kinetic study and evolution of pollutants", Fuel, Vol. 192, 2017, pp. 169-177, doi: https://doi.org/10.1016/j.fuel.2016.12.022.   DOI
9 S. Black, J. Szuhanszki, A. Pranzitelli, L. Ma, P. J. Stanger, D. B. Ingham, and M. Pourkashanian, "Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling", Fuel, Vol. 113, 2013, pp. 780-786, doi: https://doi.org/10.1016/j.fuel.2013.03.075.   DOI
10 E. Kastanaki and D. Vamvuka, "A comparative reactivity and kinetic study on the combustion of coal-biomass char blends", Fuel, Vol. 85, No. 9, 2006, pp. 1186-1193, doi: https://doi.org/10.1016/j.fuel.2005.11.004.   DOI
11 H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, "Characteristics of hemicellulose, cellulose and lignin pyrolysis", Fuel, Vol. 86, No. 12-13, 2007, pp. 1781-1788, doi: https://doi.org/10.1016/j.fuel.2006.12.013.   DOI
12 H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee, and D. T. Liang, "In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin", Energy Fuels, Vol. 20, No. 1, 2006, pp. 388-393, doi: https://doi.org/10.1021/ef0580117.   DOI
13 J. E. White, W. J. Catallo, and B. L. Legendre, "Biomass pyrolysis kinetics: a comparative critical review with relevant ag ricultural residue case studies", J. Anal. Appl. Pyrolysis, Vol. 91, No. 1, 2011, pp. 1-33, doi: https://doi.org/10.1016/j.jaap.2011.01.004.   DOI
14 M. J. Wornat, R. H. Hurt, K. A. Davis, and N. Y. C. Yang, "Single-particle combustion of two biomass chars", Symposium (International) on Combustion, Vol. 26, No. 2, 1996, pp. 3075-3083, doi: https://doi.org/10.1016/S0082-0784(96)80151-2.
15 J. K. Sun and R. H. Hurt, "Mechanisms of extinction and near-extinction in pulverized solid fuel combustion", Proc. Combust. Inst., Vol. 28, No. 2, 2000, pp. 2205-2213, doi: https://doi.org/10.1016/S0082-0784(00)80630-X.   DOI
16 S. K. Bhatia and D. D. Perlmutter, "A random pore model for fluid‐solid reactions: I. Isothermal, kinetic control", AIchE, Vol. 26, No. 3, 1980, pp. 379-386, doi: https://doi.org/10.1002/aic.690260308.   DOI
17 R. Hurt, J. K. Sun, and M. Lunden, "A kinetic model of carbon burnout in pulverized coal combustion", Combust. Flame, Vol. 113, No. 1-2, 1998, pp. 181-197, doi: https://doi.org/10.1016/S0010-2180(97)00240-X.   DOI
18 Y. Niu and C. R. Shaddix, "A sophisticated model to predict ash inhibition during combustion of pulverized char particles", Proc. Combust. Inst., Vol. 35, No. 1, 2015, pp. 561-569, doi: https://doi.org/10.1016/j.proci.2014.05.077.   DOI
19 K. Y. Lisandy, G. M. Kim, J. H. Kim, G. B. Kim, and C. H. Jeon, "Enhanced accuracy of the reaction rate prediction model for carbonaceous solid fuel combustion", Energy Fuels, Vol. 31, No. 5, 2017, pp. 5135-5144, doi: https://doi.org/10.1021/acs.energyfuels.7b00159.   DOI
20 I. W. Smith, "The combustion rates of coal chars: a review", Symposium (International) on Combustion, Vol. 19, No. 1, 1982, pp. 1045-1065. Retrieved from https://che.utah.edu/-ring/ChE-6960/Combustion%20of%20COAL%20CHARS-%20A%20REVIEW.pdf.
21 M. M. Baum and P. J. Street, "Predicting the combustion behavior of coal particles", Combust. Sci. Technol., Vol. 3, No. 5, 1971, pp. 231-243, doi: https://doi.org/10.1080/00102207108952290.   DOI
22 M. A. Field, "Rate of combustion of size-graded fractions of char from a low-rank coal between $1\;200^{\circ}K\;and\;2\;000^{\circ}K$", Combust. Flame, Vol. 13, No. 3, 1969, pp. 237-252, doi: https://doi.org/10.1016/0010-2180(69)90002-9.   DOI
23 G. M. Kim, D. G. Lee, and C. H. Jeon, "Fundamental characteristics and kinetic analysis of lignocellulosic woody and herbaceous biomass fuels", Energies, Vol. 12, No. 6, 2019, pp. 1008, doi: https://doi.org/10.3390/en12061008.   DOI
24 L. Ma, A. Guo, Q. Fang, T. Wang, C. Zhang, and G. Chen, "Combustion interactions of blended coals in an $O_2/CO_2$ mixture in a drop-tube furnace: experimental investigation and numerical simulation", Appl. Therm. Eng., Vol. 145, 2018, pp. 184-200, doi: https://doi.org/10.1016/j.applthermaleng.2018.09.033.   DOI
25 B. H. Lee, S. G. Kim, J. H. Song, Y. J. Chang, and C. H. Jeon, "Influence of coal blending methods on unburned carbon and NO emissions in a drop-tube furnace", Energy Fuels, Vol. 25, No. 11, 2011, pp. 5055-5062, doi: https://doi.org/10.1021/ef200783q.   DOI
26 ANSYS, "ANSYS FLUENT 12.0 Theory Guide", ANSYS Inc., Canonsburg, PA, 2009.