• Title/Summary/Keyword: Coal Fly Ash

Search Result 358, Processing Time 0.024 seconds

Feasibility of Coal Combustion Ash on Acidity Regulation for Agricultural Use (석탄연소재의 산도조절을 통한 농업적 활용 가능성)

  • Oh, Sejin;Kang, Min Woo;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • BACKGROUND: Coal ashes generated from thermal power plants have been known as beneficial materials for agricultural use because of their nutrient elements. However, there is limitation to recycle them due to their alkalinity. The objective of this study was to evaluate the effectiveness or safety of the coal ashes for their heavy metals on agricultural recycling when adjusted to pH of 5 with sulfuric acid. METHODS AND RESULTS: Concentration of hydrogen which is needed to adjust pH of coal ash was estimated by using a buffering curve and then the amount of sulfuric acid was changed by the estimation before incubation. Each of fly ash (FA) and bottom ash (BA) was collected from both thermal plants of Yeongdong (YD) and Yeongheung (YH). The pH values of coal ashes increased to 4.76 (from 4.34) after incubation with sulfuric acid for 56 days, closer to the targeted pH. Coal ashes also increased the contents of available phosphorus by 2-fold (165 mg/kg) and 11-fold (1,137 mg/kg) for YDBA and YDFA, respectively, compared to the control. CONCLUSION: The utilization of coal ash with its acidity regulation would be very beneficial to agriculture sector and further suggest promising environmental safety against heavy metals.

Simultaneous Extraction of Yttrium and Neodymium from Fly Ash by Two-Step Leaching Process with Aid of Ultrasonic Wave (2단계 침출 과정에서 발생되는 비산회로부터 초음파 활용하여 이트륨과 네오디뮴의 동시 추출)

  • Kim, Jae-Kwan;Park, Seok-Un
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.153-159
    • /
    • 2021
  • A two-step process for increasing the leaching efficiency of yttrium and neodymium from coal fly ash were investigated at solid loadings of 5.0 g ash ~1,000 g ash/l of 1.0 N~10.0 N H2SO4, temperature ranging from 30℃ to 90℃, ultrasonic leaching time of 1~10 hours, and ultrasonic power of 25~200 W. The yttrium and neodymium from coal fly ash were effectively leached into ion phases by step change of the first conventional dissolution at room temperature and then the second heating process with the aid of ultrasonic wave, and maximum leaching efficiency of yttrium and neodymium obtained were 66 % and 63 %, respectively. The activation energies for the leaching reaction of yttrium and neodymium at second heating process dependent on leaching time and temperature were derived to be 41.540 kJmol-1 and 507.92 kJmol-1, respectively. The optimum conditions for the maximum leaching of yttrium and neodymium were found to be the solid loading of 250 g ash/l of H2SO4, solvent concentration of 2.0 N H2SO4, and second step process of temperatures of 30℃ for 3 hours and then 90℃ for 4 hours with ultrasonic intensity of 100 W.

A Study on the Engineering Characteristics of Power Plant Coal Ash (화력발전소 부산물인 석탄회의 공학적 특성에 관한 연구)

  • Kuk, Kilkeun;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.25-34
    • /
    • 2010
  • In this study characteristics for reclaimed ash was studied to enlarge the usage of reclaimed ash which is reaching to 72 million ton producted from whole thermal power plants in South Korea. Fly ash and bottom ash are reclaimed separately at some of thermal power plants. However, typically bottom ash and fly ash are mixed when they are buried at most of the thermal power plant, as a result the engineering characteristics of ponded ash are not investigated properly. In order to investigate the engineering characteristics of the ponded ash, laboratory tests were performed with ponded ash and fly ash from youngheung and samcheonpo thermal power plants. Specific gravity, unit weight, and grain size analysis test were fulfilled to evaluate the physical characteristics and triaxial permeability test, direct shear test, unconfined compressive strength test, compaction test were performed to evaluate the mechanical characteristics. And also engineering characteristics of coal ash from anthracite and Bituminous thermal power plants were compared and studied respectively. As a result of the study, it was confirmed that using coal ash from Bituminous thermal power plants can be effective in the place where lightweight materials are required and using coal ash from anthracite thermal power plants can be effective as backfill material which require higher permeability. Finally, it was confirmed that fly ash from youngheung thermal power plants which has the lowest permeability among the tested material is suitable for a field requiring impermeable material.

CO2 Capture Performance of Dry Sorbents Manufactured by Coal Fly Ash (석탄 화력발전소의 비산재를 이용한 건식 CO2 흡수제 제조 및 특성 연구)

  • Lee, Jae Hee;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.547-553
    • /
    • 2013
  • This paper investigates the effect of coal-fired fly ash on dry $CO_2$ sorbents as the supports and additives. For this purpose, various kinds of dry sorbent were manufactured by mixing fly-ash, the primary $CO_2$ absorption components (NaOH and CaO) and water with their different combination. Thereafter, their $CO_2$ absorption performance and the property were analyzed. As a result, variation of absorption efficiency and temperature as well as $CO_2$ desorption of the sorbents are confirmed, which may be primarily ascribed to fly-ash addition to the sorbents. Particularly, fly-ash effect is strongly measured in the sorbent manufactured by mixing all four components (named WNCF sorbents). Absorption efficiency of WNCF sorbents at $550^{\circ}C$ is 35.6% higher than that of flyash free sorbent and desorption is solely observed in WNCF sorbents. Fly-ash in WNCF sorbents leads to increase the dispersity of $CO_2$ absorption components and decrease their particle size in the sorbents. In addition, fly-ash is used as the supports and pozzolanic reaction is hindered by NaOH in WNCF sorbent. Furthermore, $CO_2$ desorption from the sorbents may be due to fly-ash. The interaction between fly-ash and $CO_2$ absorption components substantially attenuate the strength between captured $CO_2$ in CaO and NaOH.

Mineralogical Properties of Bottom Ash Stored in Pond Site of Hadong Power Plant (하동 화력발전소에 저장된 Bottom ash의 광물학적 물성)

  • Moon, Hoon;Kim, Seong-Geun;Yoon, Ju-Han;Chung, Chul-Woo;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.101-102
    • /
    • 2015
  • Significant amount of bottom ash has been stored in the pond site of Hadong coal power plant located at southeast region of Korea. In order to address strong environmental regulation that is going to be enforced in the near future, it is necessary to consume waste bottom ash stored in the pond site in a sustainable manner. In this research, the chemical and mineral characteristics of various sized bottom ash samples from Hadong coal power plant were analyzed using XRF, XRD, and particle size analyzer. According to the experimental results, the chemical compositions of bottom ash was slightly changed in terms of Al and Fe content. As the size of the bottom ash increased, cristobalite was observed as a result of crystallization. The mineralogical composition and its size distribution of powder type bottom ash indicated that significant amount of fly ash is included together with small sized bottom ash.

  • PDF

The Effects of Temperature and Pressure on Synthesis of Zeolite 4A from Coal Fly Ash by Hydrothermal Reaction (석탄 비산회로부터 수열법에 의한 제올라이트 4A의 합성시 온도와 압력의 영향)

  • Yoon, Cheol;Yeon, Ik-Jun;Kim, Kwang-Yul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.217-221
    • /
    • 1999
  • This study was carried out to synthesis the zeolite using the bituminous coal fly ash emitted from power plant that occurs several environmental problems. In spite of fly ash has contained high content of $SiO_2$ and $Al_2O_3$, it disposed mainly landfill. If the effective methods to recover the $SiO_2$ and $Al_2O_3$ were developed, the fly ash could be utilized valuable raw materials. In this study, fly ash was used as raw material to synthesize the zeolite by pressurized hydrothermal reaction. Also, experimental parameters included temperature($70{\sim}110^{\circ}C$, and pressure($140{\sim}200$ psi) of crystallization were investigated. The more crystallization pressure was increased, the more Zeolite 4A was synthesized at 70 and $90^{\circ}C$. Zeolite 4A of metastable phase tend to be transformed into sodalite of stable phase at $110^{\circ}C$.

Evaluation of Some Rare Metals and Rare Earth Metals Contained in Coal Ash of Coal-fired Power Plants in Korea (국내 석탄화력발전소 석탄회 중 희유금속 가치 평가)

  • Park, Seok-Un;Kim, Jae-Kwan;Seo, Yeon-Seok;Hong, Jun-Seok;Lee, Hyoung-Beom;Lee, Hyun-Dong
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.67-75
    • /
    • 2015
  • The content distributions of some rare metals and rare earthe metals in coal ash (fly ash, bottom ash and pond ash) and leachate from coal-fired power plants were investigated. In case of Yttrium (Y) and Neodymium (Nd) which were strategic critical elements, their contents were ranged from about 23 ~ 75 mg/kg and it is shown they are worth to be developed for the recovery and separation method. Considering the annual amount of fly ash and bottom ash and pond ash, coal-fired power plants have great value of about 1,670 billion KRW and it is regards they are worthy as urban mines.

Propoerties of Beneficated Fly Ashes (미연탄서를 제거한 플라이애쉬의 특성)

  • ;Sakai Etusuo;Daimon Masaki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.613-618
    • /
    • 1999
  • This paper discuss the chemical, physical and mineral properties of classified fly ashes by electrostatic precipitator and calcinated fly ashes at 50$0^{\circ}C$. The electrostatic precipitator in coal fired power plant has a number of hopper in the direction of flue gases. The properties of fly ashes collected at each hopper in the electrostatic precipitator are different. Superfine, fine and ordinary fly ashes can be collected respectively at each hopper. The carbon content in fly ash is influenced on the viscosity of paste. By calcination, the carbon content in fly ash is decreased and the fluidity of paste is improved.

  • PDF

Study on Fly Ash as a New Raw Material in Paperboard Process (제지용 신규원료 플라이애시의 적용 가능성 평가)

  • Kim, Chul-Hwan;Lee, Ji-Young;Lee, Hui-Jin;Gwak, Hye-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.78-83
    • /
    • 2010
  • In this study, the possibility of the use of a new raw material in paperboard industry was investigated. Fly ash is one of the residues generated in the combustion of coal and generally captured from the chimney of coal-fired power plant. This material is utilized in many industries including cement, soil stabilization, composite etc., but it is not used in paper industry. Three types of fly ashes were collected from Hadong, boryeong and Seocheon steam power plants and we investigated their properties by scanning electron micrographs and particle size distribution. Papers were manufactured with KOCC and fly ashes, and the physical properties such as bulk, tensile strength, internal bond strength and ISO brightness were measured to identify the effects of fly ash on the paper properties.

A Characteristic Analysis of Physical, Chemical and Electrical Property for Bunker C Fly Ash (Bunkder C유 회분의 물리적, 화학적, 전기적 특성분석)

  • 이재근;이정언;안영철
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.88-96
    • /
    • 1996
  • The characteristic analysis of fly ash generated from a fired power plant using bunker-C oil has been investigated. Ash size distribution by an optical microscopy with image processing technique, morphological shape by a scanning electron microscope(SEM) and microscope, chemical composition by the inductively coupled plasma emission spectrometry(ICP), and resistivity measurement as a function of temperature and moisture content by the resistivity meter are performed. A study of physical, chemical and electrical characteristics of bunker-C fly ash plays an important role of improving the performance of an electrostatic precipitator and protecting air pollution. The samples of bunker-C fly ash for analysis were collected from the electrostatic precipitator hopper of Ulsan Power Plant Unit 1 and Pusan Power Plant Unit 1. Mass median diameter(MMD) of bunker-C fly ash was measured 12.7${\mu}{\textrm}{m}$, while MMD of fly ash generated from the mixture of bunker-C oil(40%) and domestic anthracitic coal(60%) was 25.7${\mu}{\textrm}{m}$. The morphological structure of bunker-C fly ash consisted of fine particles of non-spherical shape. The primary chemical components of bunker-C fly ash were composed of SiO2(2.36%), Al2O3(4.91%), Fe2O3(14.33%) and C(11.84%). Resistivity of bunker-C fly ash was found to be increased with increasing temperature at the range of 100~15$0^{\circ}C$ and was measured 103~104 ohm-cm.

  • PDF