• 제목/요약/키워드: Coadministration

검색결과 78건 처리시간 0.026초

Metformin ameliorates olanzapine-induced disturbances in POMC neuron number, axonal projection, and hypothalamic leptin resistance

  • Kim, Jaedeok;Lee, Nayoung;Suh, Sang Bum;Jang, Sooyeon;Kim, Saeha;Kim, Dong-Gyu;Park, Jong Kook;Lee, Keun-Wook;Choi, Soo Young;Lee, Chan Hee
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.293-298
    • /
    • 2022
  • Antipsychotics have been widely accepted as a treatment of choice for psychiatric illnesses such as schizophrenia. While atypical antipsychotics such as aripiprazole are not associated with obesity and diabetes, olanzapine is still widely used based on the anticipation that it is more effective in treating severe schizophrenia than aripiprazole, despite its metabolic side effects. To address metabolic problems, metformin is widely prescribed. Hypothalamic proopiomelanocortin (POMC) neurons have been identified as the main regulator of metabolism and energy expenditure. Although the relation between POMC neurons and metabolic disorders is well established, little is known about the effects of olanzapine and metformin on hypothalamic POMC neurons. In the present study, we investigated the effect of olanzapine and metformin on the hypothalamic POMC neurons in female mice. Olanzapine administration for 5 days significantly decreased Pomc mRNA expression, POMC neuron numbers, POMC projections, and induced leptin resistance before the onset of obesity. It was also observed that coadministration of metformin with olanzapine not only increased POMC neuron numbers and projections but also improved the leptin response of POMC neurons in the olanzapine-treated female mice. These findings suggest that olanzapine-induced hypothalamic POMC neuron abnormality and leptin resistance, which can be ameliorated by metformin administration, are the possible causes of subsequent hyperphagia.

Effectiveness of dexamethasone or adrenaline with lignocaine 2% for prolonging inferior alveolar nerve block: a randomized controlled trial

  • Deo, Saroj Prasad;Ahmad, Md Shakeel;Singh, Abanish
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제48권1호
    • /
    • pp.21-32
    • /
    • 2022
  • Objectives: Inferior alveolar nerve block (IANB) is commonly used for mandibular dentoalveolar surgery. The objective of this study was to evaluate and compare the effectiveness of coadministration of dexamethasone (4 mg/mL) or adrenaline (0.01 mg/mL) as an adjuvant with lignocaine 2% in IANB during third molar surgery (TMS). Patients and Methods: This double-blind, randomized controlled trial was conducted between March and August 2020. The investigators screened patients needing elective TMS under local anesthesia. Based on strict inclusion and exclusion criteria, patients were enrolled in this study. These patients were assigned randomly into two study groups: dexamethasone group (DXN) or adrenaline group (ADN). Outcome variables were postoperative edema, trismus, visual analogue scale (VAS), perioperative analgesia, onset time, and duration of IANB. Results: Eighty-three patients were enrolled in this study, of whom 23 (27.7%) were eliminated or excluded during follow-up. This study thus included data from 60 samples. Mean age was 32.28±11.74 years, including 28 females (46.7%) in the ADN (16 patients, 57.1%) and DXN (12 patients, 42.9%) groups. The duration of action for DXN (mean±standard deviation [SD], 4:02:07±0:34:01 hours; standard error [SE], 0:06:00 hours; log-rank P=0.001) and for ADN (mean±SD, 1:58:34±0:24:52 hours; SE, 0:04:42 hours; log-rank P=0.001) were found. Similarly, time at which 1st analgesic consume and total number of nonsteroidal antiinflammatory drugs need to rescue postoperative analgesia was found statistically significant between study groups (t (58)=-11.95; confidence interval, -2:25:41 to -1:43:53; P=0.001). Early-hours VAS was also significantly different between the study groups. Conclusion: A single injection of dexamethasone prolongs the duration of action of lignocaine 2% IANB. Additionally, it can be used in cases where adrenaline is contraindicated.

Effect of Spinally Administered Ginseng Total Saponin on Capsaicin-Induced Pain and Excitatory Amino Acids-Induced Nociceptive Responses

  • Nah Jin-Ju;Choi Seok;Kim Yoon-Hee;Kim Seok-Chang;Nam Ki-Yeul;Kim Jong-Keun;Nah Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제23권1호
    • /
    • pp.38-43
    • /
    • 1999
  • 진세노사이드(ginseng total saponin)는 인삼의 주요 약리학적 성분이다. 본 연구는 척수강내로 투여된 진세노사이드가 캡사이신에 의하여 유도된 통증을 억제하는가를 연구하였다. 진세노사이드의 척수강내 전투여는 캡사이신에 의하여 유도되는 통증을 투여 용량에 의존적으로 억제하였다. 통증 억제 효과를 나타내는 $ED_{50}$은 43 ${mu}g/mouse$ 이었다. 흥분성 아미노산들도 척수 수준에서 통증전달에 포함되기 때문에 본 연구에서는 또한 진세노사이드가 흥분성 아미노산에 의하여 유도되는 아픈 행동(nociceptive behaviors)을 억제하는 가를 연구하였다. 진세노사이드와 NMDA를 같이 투여할 경우 NMDA를 단독 투여할 때 나타나는 아픈 행동을 억제하는 것으로 나타났다. 진세노사이드가 NMDA에 의하여 나타나는 아픈 행동을 억제하는 $ED_{50}$은 37 ${mu}g/mouse$ 이었다. 그러나 진세노사이드는 kainate투여에 의하여 나타나는 아픈 행동을 억제하지 않은 것으로 나타났다. 이러한 연구 결과들은 진세노사이드에 의한 항통증 효능중의 하나는 척수 수준에서 통증 전달 물질에 의하여 유도되는 통증 전달 정보의 선택적 억제에 의하여 이루어진다는 것을 보여준다.

  • PDF

CCR7 Ligand의 Memory CD4+ T 세포 증가유도 및 바이러스 감염에 대한 방어효과 (CCR7 Ligands Induced Expansion of Memory CD4+ T Cells and Protection from Viral Infection)

  • 어성국;조정곤
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2003
  • Background: CC chemokine receptor (CCR) 7 and cognate CCR7 ligands, CCL21 (formerly secondary lymphoid tissue chemokine [SLC]) and CCL19 (formerly Epstein-Barr virus-induced molecule 1 ligand chemokine [ELC]), were known to establish microenvironment for the initiation of immune responses in secondary lymphoid tissue. As described previously, coadministration of DNA vaccine with CCR7 ligand-encoding plasmid DNA elicited enhanced humoral and cellular immunity via increasing the number of dendritic cells (DC) in secondary lymphoid tissue. The author hypothesized here that CCR7 ligand DNA could effectively expand memory CD4+ T cells to protect from viral infection likely via increasing DC number. Methods: To evaluate the effect of CCR7 ligand DNA on the expansion of memory CD4+ T cells, DO11.10.BALB/c transgenic (Tg)-mice, which have highly frequent ovalbumin $(OVA)_{323-339}$ peptide-specific CD4+ T cells, were used. Tg-mice were previously injected with CCR7 ligand DNA, then immunized with $OVA_{323-339}$ peptide plus complete Freund's adjuvant. Subsequently, memory CD4+ T cells in peripheral blood lymphocytes (PBL) were analyzed by FACS analysis for memory phenotype ($CD44^{high}$ and CD62 $L^{low}$) at memory stage. Memory CD4+ T cells recruited into inflammatory site induced with OVA-expressing virus were also analyzed. Finally, the protective efficacy against viral infection was evaluated. Results: CCR7 ligand DNA-treated Tg-mice showed more expanded $CD44^{high}$ memory CD4+ T cells in PBL than control vector-treated animals. The increased number of memory CD4+ T cells recruited into inflammatory site was also observed in CCR7 ligand DNA-treated Tg-mice. Such effectively expanded memory CD4+ T cell population increased the protective immunity against virulent viral infection. Conclusion: These results document that CCR7 and its cognate ligands play an important role in intracellular infection through establishing optimal memory T cell. Moreover, CCR7 ligand could be useful as modulator in DNA vaccination against viral infection as well as cancer.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Variability in Drug Interaction According to Genetic Polymorphisms in Drug Metabolizing Enzymes

  • Jang, In-Jin;Yu, Kyung-Sang;Cho, Joo-Youn;Chung, Jae-Yong;Kim, Jung-Ryul;Lim, Hyeong-Seok;Shin, Sang-Goo
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권1호
    • /
    • pp.15-18
    • /
    • 2004
  • There are significant differences in the extent of drug interactions between subjects. The influence of the genetic make up of drug metabolizing enzyme activities (CYP3A5, CYP2C19 and UDP-glucuronosyl transferase) on the pharmacokinetic drug interaction potential were studied in vivo. Nineteen healthy volunteers were grouped with regard to the $CYP3A5^{*}3$ allele, into homozygous wild-type (CYP3A5^{*}1/1^{*}1$, n=6), heterozygous $(CYP3A5^{*}1/^{*}3$, n=6), and homozygous variant-type $(CYP3A5^{*}3/^{*}3$, n=7) subject groups. The pharmacokinetic profile of intravenous midazolam was characterized before and after itraconazole administration (200 mg once daily for 4 days), and also following rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. For omeprazole and moclobemide pharmacokinetic interaction study 16 healthy volunteers were recruited. The volunteer group comprised 8 extensive metabolizers and 8 poor metabolizers of CYP2C19, which was confirmed by genotyping. Subjects were randomly allocated into two sequence groups, and a single-blind, placebo-controlled, two-period crossover study was performed. In study I, a placebo was orally administered for 7 days. On the eighth morning, 300 mg of moclobemide and 40 mg of placebo were coadministered with 200 mL of water, and a pharmacokinetic study was performed. During study n, 40 mg of omeprazole was given each morning instead of placebo, and pharmacokinetic studies were performed on the first and eighth day with 300 mg of moclobemide coadministration. In the UGT study pharmacokinetics and dynamics of 2 mg intravenous lorazepam were evaluated before and after rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. The subjective and objective pharmacodynamic tests were done before and 1, 2, 4, 6, 8, and 12 hrs after lorazepam administration. The pharmacokinetic profiles of midazolam and of its hydroxy metabolites did not show differences between the genotype groups under basal and induced metabolic conditions. However, during the inhibited metabolic state, the $CYP3A5^{*}3/^{*}3$ group showed a greater decrease in systemic clearance than the $CYP3A5^{*}1/^{*}1$ group $(8.5\pm3.8$ L/h/70 kg vs. $13.5\pm2.7$ L/h/70 kg, P=0.027). The 1'-hydroxymidazolam to midazolam AUC ratio was also significantly lower in the $CYP3A5^{*}3/^{*}3$,/TEX> group $(0.58\pm0.35,$ vs. $1.09\pm0.37$ for the homozygous wild-type group, P=0.026). The inhibition of moclo-bemide metabolism was significant in extensive metabolizers even after a single dose of omeprazole. After daily administration of omeprazole for 1 week, the pharmacokinetic parameters of moclobemide and its metabolites in extensive metabolizers changed to values similar to those in poor metabolizers. In poor meta-bolizers, no remarkable changes in the pharmacokinetic parameters were observed. The area under the time-effect curves of visual analog scale(VAS), choice reaction time, and continuous line tracking test results of lorazepam was reduced by 20%, 7%, 23% respectively in induced state, and in spite of large interindividual variablity, significant statistical difference was shown in VAS(repeated measures ANOVA, p=0.0027).

  • PDF

Variability in Drug Interaction According to Genetic Polymorph isms in Drug Metabolizing Enzymes

  • Jang, In-Jin;Yu, Kyung-Sang;Cho, Joo-Youn;Chung, Jae-Yong;Kim, Jung-Ryul;Lim, Hyeong-Seok;Shin, Sang-Goo
    • 한국환경성돌연변이발암원학회지
    • /
    • 제23권4호
    • /
    • pp.131-134
    • /
    • 2003
  • There are significant differences in the extent of drug interactions between subjects. The influence of the genetic make up of drug metabolizing enzyme activities (CYP3A5, CYP2C19 and UDP-glucuronosyl transferase) on the pharmacokinetic drug interaction potential were studied in vivo. Nineteen healthy volunteers were grouped with regard to the $CYP3A5^{*}3$ allele, into homozygous wild-type (CYP3A5^{*}1/1^{*}1$, n=6), heterozygous $(CYP3A5^{*}1/^{*}3$, n=6), and homozygous variant-type $(CYP3A5^{*}3/^{*}3$, n=7) subject groups. The pharmacokinetic profile of intravenous midazolam was characterized before and after itraconazole administration (200 mg once daily for 4 days), and also following rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. For omeprazole and moclobemide pharmacokinetic interaction study 16 healthy volunteers were recruited. The volunteer group comprised 8 extensive metabolizers and 8 poor metabolizers of CYP2C19, which was confirmed by genotyping. Subjects were randomly allocated into two sequence groups, and a single-blind, placebo-controlled, two-period crossover study was performed. In study I, a placebo was orally administered for 7 days. On the eighth morning, 300 mg of moclobemide and 40 mg of placebo were coadministered with 200 mL of water, and a pharmacokinetic study was performed. During study n, 40 mg of omeprazole was given each morning instead of placebo, and pharmacokinetic studies were performed on the first and eighth day with 300 mg of moclobemide coadministration. In the UGT study pharmacokinetics and dynamics of 2 mg intravenous lorazepam were evaluated before and after rifampin pretreatment (600 mg once daily for 10 days), with a washout period of 2 weeks in between. The subjective and objective pharmacodynamic tests were done before and 1, 2, 4, 6, 8, and 12 hrs after lorazepam administration. The pharmacokinetic profiles of midazolam and of its hydroxy metabolites did not show differences between the genotype groups under basal and induced metabolic conditions. However, during the inhibited metabolic state, the $CYP3A5^{*}3/^{*}3$ group showed a greater decrease in systemic clearance than the $CYP3A5^{*}1/^{*}1$ group $(8.5\pm3.8$ L/h/70 kg vs. $13.5\pm2.7$ L/h/70 kg, P=0.027). The 1'-hydroxymidazolam to midazolam AUC ratio was also significantly lower in the $CYP3A5^{*}3/^{*}3$,/TEX> group $(0.58\pm0.35,$ vs. $1.09\pm0.37$ for the homozygous wild-type group, P=0.026). The inhibition of moclo-bemide metabolism was significant in extensive metabolizers even after a single dose of omeprazole. After daily administration of omeprazole for 1 week, the pharmacokinetic parameters of moclobemide and its metabolites in extensive metabolizers changed to values similar to those in poor metabolizers. In poor meta-bolizers, no remarkable changes in the pharmacokinetic parameters were observed. The area under the time-effect curves of visual analog scale(VAS), choice reaction time, and continuous line tracking test results of lorazepam was reduced by 20%, 7%, 23% respectively in induced state, and in spite of large interindividual variablity, significant statistical difference was shown in VAS(repeated measures ANOVA, p=0.0027).

  • PDF

랫드에서 TCDD 투여에 의해 유도된 생체독성의 고려홍삼 추출물에 의한 억제 효과 (Protective Effects of Korean Panax Ginseng Extracts against TCDD-induced Toxicities in Rat)

  • 최수진;손형옥;신한재;현학철;이동욱;송용범;이수현;강동호;임학섭;이철원;문자영
    • Journal of Ginseng Research
    • /
    • 제32권4호
    • /
    • pp.382-389
    • /
    • 2008
  • TCDD가 실험동물에 노출되었을 때 유발되는 생체독성을 예방 또는 억제할 수 있는 고려홍삼 추출물의 효과를 탐색하였다. 이를 위하여 TCDD($25\;{\mu}g/kg$ bw, 1회 투여)와 홍삼추출물(100 mg/kg bw, 격일투여)을 각각 단독 또는 병행 복강 투여한 다음 32일 동안에 체중과 각 장기들의 무게의 변화, 뇨 분석, 혈액학적 및 혈액화학적 변화를 관찰하였다. TCDD의 단독투여에 의하여 체중의 증가정도가 정상군 또는 홍삼단독 투여군의 체중증가율에 비하여 상당히 감소하였다. TCDD와 홍삼추출물을 병행 투여한 흰쥐에서의 체중증가율은 TCDD 단독투여에 의해 감소된 체중증가율을 다소 회복 시키는 결과를 나타내었다. TCDD를 단독 투여한 실험군에서는 간의 무게가 TCDD 투여 후 2, 5, 및 16일째에 대조군에 비하여 특이적으로 증가하는 특징을 보였으나, 홍삼추출물을 단독 투여한 실험군에서의 간의 무게는 대조군의 간의 무게에 비하여 다소 감소하였다. TCDD와 홍삼추출물이 병행 투여된 흰쥐에서의 간의 무게의 증가정도는 TCDD을 단독투여한 흰쥐 간의 무게에 비하여 약간 감소하였다. TCDD를 단독투여한 흰쥐에서의 신장(Kidney)의 무게는 대조군에 비하여 다소 감소하였으나 통계적으로는 유의하지 않았다. TCDD와 홍삼추출물을 병행투여한 흰쥐에서의 신장의 무게의 변화는 TCDD를 단독 투여한 흰쥐에서의 결과와 차이가 없었다. 홍삼추출물 단독 투여군에서의 신장의 무게는 실험초기(1-2일)에 대조군에 비하여 다소 감소하는 경향을 보였으나 5일 째부터는 대조군과 같은 수준으로 회복되었다. Spleen은 TCDD의 단독투여에 의해 2-3일 이내에 일시적인 감소가 있었으나 노출기간이 증가할수록 대조군 수준으로 회복되었다. 홍삼추출물단독 투여군과 TCDD와 홍삼추출물의 병행투여군에서 spleen의 무게는 대조군에 비하여 투여 후 16일 이후에는 유의적으로 증가하였다. TCDD와 홍삼추출물의 단독 또는 병행 투여군에서의 뇌의 무게는 유의적인 변화를 보이지 않았다. 실험동물 뇨에서의 specific gravity는 대조군에서 주령에 상관없이 대체적으로 1.030 이상의 수준을 유지하였으나 홍삼추출물을 단독 투여한 흰쥐에서는 투여 후 14일부터 specific gravity가 1.02 수준으로 낮아지는 경향이 나타났다. TCDD 단독 투여군에서는 투여 초기에 specific gravity가 1.02 수준으로 감소하는 경향이 있었으나 홍삼추출물을 병행투여했을때 1.02 수준으로 감소하는 경향이 14일 이후에 나타났다. 실험동물 뇨에서의 Total protein 함량은 대조군에서 전체 실험기간 동안에 $100\;{\mu}g/dL$ 수준을 유지하였으나, TCDD 단독 투여군과 TCDD와 홍삼추출물의 병행 투여군에서는 $300\;{\mu}g/dL$ 이상의 함량을 나타내는 개체수가 증가하는 현상을 보였다. 한편, 홍삼추출물 단독 투여군에서는 대조군에서와 비슷한 Total protein 함량의 수준을 나타내었다. 뇨에서 ketone body의 함량은 대조군에서 주령의 증가에 따라 높아지는 경향을 나타내었으나 실험군 간의 차이는 나타나지 않았다. Glucose, ketone, bilirubin, Occult blood, nitrite 및 urobilinogen의 함량은 모든 실험군에서 거의 유사하게 나타났으며, pH 값은 주령의 증가에 따라 높아지는 경향이 특징적이었으나 실험군간의 차이는 나타나지 않았다. 혈액화학적 검사결과 TCDD의 단독투여에 의한 AST는 대조군에 비하여 전 실험기간에 걸쳐서 전반적으로 높게 나타났으며, 특히 32일 실험군에서 가장 높은 AST 값을 나타내었다. 홍삼추출물의 단독 투여에 의한 AST는 TCDD의 단독 투여군과는 대조적으로 오히려 노출기간이 경과할수록 감소하였다. 그리고 TCDD의 투여에 의해 증가된 AST는 홍삼추출물을 병행투여 한 지 16일부터 정상 수준으로 회복되었다. TCDD를 단독 투여한 흰쥐 혈청 ALT의 활성은 16일 까지는 대조군의 ALT 활성과 비슷한 수준이었으나 32일 째에는 대조군에 비하여 상당히 증가하였다. 이에 비하여 TCDD와 홍삼추출물을 병행 투여한 실험군에서는 16일군과 32일군에서 ALT의 활성이 급격히 감소하여 대조군의 ALT 활성보다 낮게 나타났다. 홍삼을 단독 투여한 실험군에서의 ALT 활성은 전 실험기간동안에 ALT 활성에 영향을 주지 않았다.