• Title/Summary/Keyword: CoO doping

Search Result 270, Processing Time 0.033 seconds

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect (도핑효과에 따른 리튬이차전지용 NCA 양극활물질의 전기화학적 특성 향상)

  • Fan, Zhi Yu;Jin, n Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.861-867
    • /
    • 2017
  • In order to improve the capacity and cycling stability of Ni-rich NCA cathode materials for lithium ion batteries, the boron and cobalt were doped in commercial $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA) powders. Commercial NCA particles are mixed composites such as secondary particles of about $5{\mu}m$ and $12{\mu}m$, and the particle size was decreased by doping boron and cobalt. The initial discharge capacities of the boron and cobalt doped NCA-B and NCA-Co were found to be 214 mAh/g and 200 mAh/g, respectively, which are higher values than that of the raw NCA cathode material. In particular, NCA-Co exhibits the best discharge capacity of 157 mAh/g after 20 cycles, which is probably due to the enhanced diffusion of lithium ion by crystal growth along with the c-axis direction.

Kinetics and Mechanism of the Oxidation of Carbon Monoxide on CoO-$\alpha-Fe_2O_3$ Catalysts

  • Kim, Keu Hong;Choi, Jae Shi;Kim, Young Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.389-393
    • /
    • 1987
  • The oxidation of carbon monoxide by gaseous oxygen on 0.53, 1.02, and 1.51 mol $\%$CoO-doped $-Fe_2O_3$ catalysts has been investigated in the temperature range from 340 to 480$^{\circ}C$ under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-order kinetics; the 0.5-order with respect to $O_2$ and the first-order with respect to CO. In the above temperature range, the activation energy is 0.34 $\pm$ 0.01 eV${\cdot}$$mol^{-1}$. The electrical conductivity of 0.53, 1.02, and 1.51 mol %CoO-doped $\alpha$-$Fe_2O_3$ has been measured at 350$^{\circ}C$ under various $P_{CO}and $P_{O_2}$. From the conductivity data it was found that $O_2$ was adsorbed on Vo formed by doping with CoO, while CO appeared essentially to be chemisorbed on the lattice oxygen of the catalyst surface. The proposed oxidation mechanism and the dominant defect were supported by the agreement between the kinetic data and conductivities.

The Fabrication of Er/Al Co-doped Silica Films for 1.55 $\mu\textrm{m}$ Optical Amplifier (1.55 $\mu\textrm{m}$ 광증폭기용 Er/Al 첨가 광도파막의 제조)

  • 노성인;김재선;정용순;신동욱;송국현
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this research, the fabrication of Si/SiO$_2$optical waveguide amplifier by FHD(Flame Hydrolysis Deposition) and Solution Doping was carried out. It was observed that the reduction of fluorescence was prevented up to 0.14 wt% Er whn 0.48 wt% Al was doped and the FWHA of $1.5mutextrm{m}$ fluorescence band increased by 5 nm as increasing amount of Al. Therefore from these results, we could confirm depressing concentration quenching of Er ions and increasing FWHM of fluorescence spectrum by addition of Al.

  • PDF

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

The studies of Structure and Ferromagnetism on Co doped ZnO powders (자성반도체 Co-doped ZnO 다결정계의 구조 및 강자성 특성)

  • 박정환;장현명;김민규
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.176-176
    • /
    • 2003
  • 강자성 반도체(DMS)는 반도체에 전이금속을 doping함으로써 반도체의 전자 수송 특성과 전이 금속 이온에 의한 자기적 특성을 동시에 발현할 수 있도록 설계된 물질로서 '스핀 전자공학'의 구현을 위해 현재 활발히 연구되고 있는 분야이다. 특히 높은 전기 전도도와 투명 광 특성을 가지는 ZnO계는 전이금속을 첨가 할 경우 상온에서도 강자성 특성을 보일 것이라는 연구가 발표 된 이후 큰 주목을 받고 있으며, 실제로 Tc가 상온 이상인 결과들이 최근 발표되고 있다. 그러나 PLD에 의해 증착 된 Co-doped ZnO 경우 강자성 물성의 재현성이 아주 낮은 것으로 알려져 있는 둥 강자성 발현의 기원이 아직도 명확히 규명되지 못한 상태이다. 이에 본 연구에서는 Co-doped ZnO 계의 강자성 발현의 기원을 밝히고자 고상 반응법을 이용하여 다결정계를 제조한 후 X-선 회절 분석과 Raman 분광법을 이용하여 제2차상의 존재 유무 및 Co 이온의 치환 정도를 분석하였다. 다음으로 방사광 EXAFS 분석을 행하여 ZnO내에서의 Co 이온의 원자가 상태를 분석하고, PPMS를 사용 M-T curve를 측정/분석함으로써 강자성 발현의 기원을 규명하고자 하였다.

  • PDF

Kinetics and Mechanisms of the Oxidation of Carbon Monoxide on Ni-Doped $\alpha-Fe_2O_3$

  • Kim, Keu-Hong;Jun, Jong-Ho;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.41-44
    • /
    • 1984
  • The oxidation of carbon monoxide has been investigated on Ni-doped ${\alpha}-Fe_2O_3$ catalyst at 300 to $450^{\circ}$. The oxidation rates have been correlated with 1.5-order kinetics; first with respect to CO and 1/2 with respect to $O_2$. Carbon monoxide is adsorbed on lattice oxygen of Ni-doped ${\alpha}-Fe_2O_3$, while oxygen appears to be adsorbed on oxygen vacancy formed by Ni-doping. The conductivities show that adsorption of CO on O-lattice produces conduction electron and adsorption of $O_2$ on O-vacancy withdraws the conduction electron from vacancy. The adsorption process of CO on O-lattice is rate-determining step and dominant defect of Ni-doped ${\alpha}-Fe_2O_3$ is suggested from the agreement between kinetic and conductivity data.

Effects of Ta Doping in Sputter-deposited PZT Thin Films (스퍼터링에 의해 제도된 PZT 박막에 있어서 Ta 첨가 효과)

  • 길덕신;주재현;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.920-926
    • /
    • 1994
  • Ta doped PZT thin films were prepared by a reactive sputtering method with a 3-gun magnetron co-sputter, and effects of Ta doping on physical and electrical properties of the films were studied. Within the doping range of 0 to 3.6 at%, Ta doping enhanced the crystallographic orientation of (110), but reduced that of (100). Ta doped PZT had a larger grain size of about 20 ${\mu}{\textrm}{m}$ compared with that of 5 ${\mu}{\textrm}{m}$ for un-doped PZT. Pits and holes of PZT films which used to appear with annealing at high temperature due to evaporation of PbO were much suppressed with addition of Ta. The leakage current could be reduced down to 1.27$\times$10-8 A/$\textrm{cm}^2$ and the charge storge density as large as 25.8$\mu$C/$\textrm{cm}^2$ was obtained.

  • PDF