• 제목/요약/키워드: CoFeNi alloy

검색결과 129건 처리시간 0.029초

스퍼터링 방법으로 성장한 코발트크롬철망간니켈 고엔트로피 질산화물 박막의 구조특성 (Structural Characterization of CoCrFeMnNi High Entropy Alloy Oxynitride Thin Film Grown by Sputtering)

  • 이정국;홍순구
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.595-600
    • /
    • 2018
  • This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young's modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.

고강도 저열팽창 인바합금에 있어서 CO 첨가의 영향 (Effects of Co Addition in High Strength and Low Thermal Expansion Invar Alloy)

  • 김봉서;조영암;유경재;권해웅;이희웅;김병걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1901-1903
    • /
    • 1999
  • To investigate invar alloy as a core material for increased capacity over-head transmission line which have high strength and low thermal expansion coefficient, hardness and thermal expansion coefficient of Fe-Ni-Co alloy have been studied. It is necessary that invar alloy have low thermal expansion coefficient and high strength for increased capacity over-head transmission line. In this paper. we tried to find out the effect of Ni and Co which has ferromagnetic properties and high saturation magnetization. It was found that Ni decrease thermal expansion coefficient and hardness, Co decrease thermal expansion coefficient but increase hardness in Fe-xNi-Co system. In Fe-(29-x)Ni-Co system, the material has no low thermal expansion properties substituting Co instead of Ni in concentration range of $1\sim7$%Co.

  • PDF

A Study on AK Shadow Mask with Fe-Ni Alloy Coating for Flat CPTs

  • Kim, Sang-Mun
    • Journal of Information Display
    • /
    • 제5권4호
    • /
    • pp.27-30
    • /
    • 2004
  • This paper investigates the effects of coating such as Invar (Fe-36% Ni), Fe-Ni Alloys and $WO_3$ on the doming property of aluminum killed (AK) shadow masks, which may be used for flat CPTs. Invar and Fe-Ni Alloys are deposited on AK shadow mask in plasma atmosphere and annealed. $WO_3$ is screen-printed on the deposited layer. The coating is observed to cause a decrease in the doming property of the shadow masks due to their lower thermal expansion coefficients and anti-doming properties.

AIM 및 ESR 법에 의해 제조한 Fe-29Ni-17Co 합금의 조직 및 성질 (Structure and Properties of Fe-29Ni-17Co Alloy Manufactured by Air Induction Melting and Electro-Slag Remelting)

  • 이정근;김문현;주대헌;김명호
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.160-166
    • /
    • 2002
  • The structure and properties of Fe-29Ni-17Co alloy which had been melted using induction furnace in air atmosphere and than electroslag-remelted were investigated. The oxygen content was reduced to 0.03% when the ingot was refined from $0.09{\sim}0.12%$ of that air melted. The amounts of spheroidal oxides inclusions and gas porosities of ingot were markedly reduced by the ESR process. CTE of ESR ingot contained small amount of oxides and porosities was found to be lower than that of AIM ingot, and tensile properties of ESR ingot and plate were found to be superior than that of AIM ingot and plate.

SOFC anode용 나노구형 Ni(1-x)-M(x=0~0.15)(M=Co, Fe) alloy 분말 합성 및 그 특성 (Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0~0.15)(M=Co, Fe) Alloy Powder for SOFC Anode)

  • 이민진;최병현;지미정;안용태;홍선기;강영진;황해진
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.

Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성 (Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4)

  • 백민규;도경효;;박종진
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy;Hong, Soon-Ku;Ngo, Trong Si;Lee, Jeongkuk;Park, Yun Chang;Hong, Sun Ig;Na, Young-Sang
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1285-1292
    • /
    • 2018
  • Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

Ag - CoFe 합금박막의 자기저항 및 강자성 상하지층의 효과 (Effect of Fcrromagnetic Layer and Magnetoresistance Behavior of Co-Evaporated Ag-CoFe Nano-Granular Alloy Films)

  • 김용혁;이성래
    • 한국자기학회지
    • /
    • 제7권6호
    • /
    • pp.308-313
    • /
    • 1997
  • 조성과 강자성 상하지층이 CoFe-Ag 나노입상 합금박막의 거대자기저항과 포화자기장에 미치는 효과에 대하여 연구하였다. 3000 .angs. 두께의 ( $Co_{92}$Fe$_{8}$)$_{31}$Ag$_{69}$ 합금박막에서 최대 자기저항 25.7%를 얻었고, 그 때 포화자장은 2.1 kOe 이었다. 100 .angs. 두께의 박막은 자기저항비가 1.2%이고 포화자장은 5.2 kOe 이었다. 200 .angs. 두께의 합금 박막에 100 .angs. Fe를 상하지층으로 증착하였을 때 자기저항은 9.5 %dptj 11 %로 증가하였고 포화자기장은 2.8 kOe에서 1.8 kOe로 개선되었다. 300 .angs. 이하의 합금박막에 강자성 상하지층의 피복은 교환결합에 의하여 합금박막의 포화자기장을 감소시키는 효과가 있었다. 강자성 상하지층에 의한 자기저항의 증가는 표면에서의 전도전자의 스핀 전도산란의 감소와 계면저항에 의한 전류새흐름의 감소로 기인되는 것으로 보인다. 자기저항의 증가 효과는 합금박막의 두께가 약 300 .angs. 이하에서 나타났다. 교환결합 강자성체인 NiFe 그리고 Fe 중에서 Fe가 교환결합에 의한 포화자기장 감소에 좀더 효과적이었다.

  • PDF

선택적 레이저 용융법으로 제조된 CoCrFeMnNi계 고엔트로피합금의 미세조직 및 기계적 물성 연구 동향 (Microstructure and Mechanical Properties of CoCrFeMnNi-type High-entropy Alloy Fabricated by Selective Laser Melting: A Review)

  • 박정민
    • 한국분말재료학회지
    • /
    • 제29권2호
    • /
    • pp.132-151
    • /
    • 2022
  • The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single face-centered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength-ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.