• Title/Summary/Keyword: Co-laboratory

Search Result 3,254, Processing Time 0.029 seconds

Degradation of Coatings under Atmospheric Tropical Conditions

  • To, Thi Xuan Hang;Pham, Gia Vu;Vu, Ke Oanh;Trinh, Anh Truc;Kodama, Toshiaki;Tanabe, Hiroyuki;Taki, Tohru;Nagai, Masanori
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.207-211
    • /
    • 2003
  • The weather resistance of five coatings systems based on alkyd, chlorinated rubber, epoxy, polyurethane and fluoropolymer were studied by natural exposure test and accelerated test. The coatings were exposed at Hanoi station with urban industry atmosphere and at Baichay station with marine atmosphere. The degradation of coatings was evaluated by gloss measurement and surface analysis by scanning electronic microscopy. The results obtained show that among coatings tested the gloss of polyurethane and fluoropolymer coatings remained highly and those of alkyd, chlorinated rubber and epoxy coatings were very low after two years of atmospheric exposure. Under accelerating conditions the gloss of fluoropolymer coatings remained highly after 80 cycles of testing. By comparison with accelerating test in UV-condensation chamber the conditions at atmospheric stations are more aggressive.

EphrinB1 interacts with the transcriptional co-repressor Groucho/xTLE4

  • Kamata, Teddy;Bong, Yong-Sik;Mood, Kathleen;Park, Mae-Ja;Nishanian, Tagvor G.;Lee, Hyun-Shik
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.199-204
    • /
    • 2011
  • Ephrin signaling is involved in various morphogenetic events, such as axon guidance, hindbrain segmentation, and angiogenesis. We conducted a yeast two-hybrid screen using the intracellular domain (ICD) of EphrinB1 to gain biochemical insight into the function of the EphrinB1 ICD. We identified the transcriptional co-repressor xTLE1/Groucho as an EphrinB1 interacting protein. Whole-mount in situ hybridization of Xenopus embryos confirmed the co-localization of EphrinB1 and a Xenopus counterpart to TLE1, xTLE4, during various stages of development. The EphrinB1/xTLE4 interaction was confirmed by co-immunoprecipitation experiments. Further characterization of the interaction revealed that the carboxy-terminal PDZ binding motif of EphrinB1 and the SP domain of xTLE4 are required for binding. Additionally, phosphorylation of EphrinB1 by a constitutively activated fibroblast growth factor receptor resulted in loss of the interaction, suggesting that the interaction is modulated by tyrosine phosphorylation of the EphrinB1 ICD.

Co-Pilot Agent for Vehicle/Driver Cooperative and Autonomous Driving

  • Noh, Samyeul;Park, Byungjae;An, Kyounghwan;Koo, Yongbon;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.1032-1043
    • /
    • 2015
  • ETRI's Co-Pilot project is aimed at the development of an automated vehicle that cooperates with a driver and interacts with other vehicles on the road while obeying traffic rules without collisions. This paper presents a core block within the Co-Pilot system; the block is named "Co-Pilot agent" and consists of several main modules, such as road map generation, decision-making, and trajectory generation. The road map generation builds road map data to provide enhanced and detailed map data. The decision-making, designed to serve situation assessment and behavior planning, evaluates a collision risk of traffic situations and determines maneuvers to follow a global path as well as to avoid collisions. The trajectory generation generates a trajectory to achieve the given maneuver by the decision-making module. The system is implemented in an open-source robot operating system to provide a reusable, hardware-independent software platform; it is then tested on a closed road with other vehicles in several scenarios similar to real road environments to verify that it works properly for cooperative driving with a driver and automated driving.

Laboratory Measurements on the Uptake of Carbon Monoxide by Soils (토양의 일산화탄소 제거에 관한 연구)

  • Myung Ja Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.31-37
    • /
    • 1983
  • The consumption of atmospheric carbon monoxide by soil was measured under laboratory conditions in different types of soils. Laboratory experiments were performed with humus containing high proportion of organic matter, roadside soils, and humus and roadside soils previously exposed to high concentration of CO by reusing in the experiment. CO concentrations in the 18.2 l-reaction vessel were varied from 2,000 ppm to 24,000ppm to estimate the effectiveness of CO consumption at high level of CO. The uptake of CO by soil was measured by gas chromatography using a TCD detector. The control experiments conducted along with the soil experiments evidently indicated that the potting soil is responsible for CO consumption. Humus showed much higher CO uptake rates compared with the soil taken from roadside. The humus reused in the experiment showed somewhat higher rates(15%) of uptake than the fresh one. The soil's ability to remove CO from the test atmosphere reached a maximum near the CO concentration of 13,000 ppm in the range of $9,000~24,000ppm$. The addition of streptomycin did not influence the removal capacity of soil significantly, whereas 10% saline solution remarkably prevented CO uptake of the humus sample.

  • PDF

Effect of metal ions on the secondary structure and activity of calf intestine phosphatase

  • Chen, Fengjuan;Liu, Guoqi;Xu, Zhihong;Zeng, Zhengzhi
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.305-309
    • /
    • 2008
  • Cobalt is an essential microelements in many biological processes involving enzymatic activity. We found that $Zn^{2+}$ and $Mg^{2+}$, which are in the active site of native calf intestine alkaline phosphatase (CIP), can be replaced by $Co^{2+}$ directly in solution. The effect of $Co^{2+}$ concentration on the substitution reaction was examined at ratios of [$Co^{2+}$]/[CIP] from 0:1 to 8:1. The quantity of $Zn^{2+}$ in CIP decreased progressively as the ratio was increased, but the amount of $Mg^{2+}$ changed in irrregular fashion. A series of active site models of the reaction mechanism of CIP are proposed. Low pH was found to promote the replacement of $Mg^{2+}$ by $Co^{2+}$. To understand how the substitution affects the enzyme, we also solved the secondary structure of CIP after reaction with $Co^{2+}$ in different conditions.

Performance Evaluation of K-based Solid Sorbents Depending on the Internal Structure of the Carbonator in the Bench-scale CO2 Capture Process (벤치급 CO2 포집공정에서 흡수반응기의 내부구조에 따른 K-계열 고체흡수제의 성능평가)

  • Kim, Jae-Young;Lim, Ho;Woo, Je Min;Jo, Sung-Ho;Moon, Jong-Ho;Lee, Seung-Yong;Lee, Hyojin;Yi, Chang-Keun;Lee, Jong-Seop;Min, Byoung-Moo;Park, Young Cheol
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.419-425
    • /
    • 2017
  • In this study, the performance characteristics of the K-based sorbents (KEP-CO2P2, KEPCO RI, Korea) has been studied in relation with the heat exchanger structure and shape in a mixing zone of the carbonator in the bench-scale dry $CO_2$ capture process. Two types of heat exchangers (different structure and shape) were used in the carbonator as CASE 1 and CASE 2, in which the experiment has been continuously performed under the same operating conditions. During the continuous operation, working temperature of carbonator was 75 to $80^{\circ}C$, that of regenerator was 190 to $200^{\circ}C$, and $CO_2$ inlet concentration of the feed gas was 12 to 14 vol%. Especially, to compare the dynamic sorption capacity of sorbents, the differential pressure of the mixing zone in the carbonator was maintained around 400 to 500 mm $H_2O$. Also, solid samples from the carbonator and the regenerator were collected and weight variation of those samples was evaluated by TGA. The $CO_2$ removal efficiency and the dynamic sorption capacity were 64.3% and 2.40 wt%, respectively for CASE 1 while they were 81.0% and 4.66 wt%, respectively for CASE 2. Also, the dynamic sorption capacity of the sorbent in CASE 1 and CASE 2 was 2.51 wt% and 4.89 wt%, respectively, based on the weight loss of the TGA measurement results. Therefore, It was concluded that there could be a difference in the performance characteristics of the same sorbents according to the structure and type of heat exchanger inserted in the carbonator under the same operating conditions.

Synthesis of Copolymeric PHA by Hydrogenophaga pseudoflava and Ralstonia eutropha H16 from Vari-ous Lactones and Their Microstructural Studies (락톤류로부터 Hydrogenophaga pseudoflava와 Ralstonia eutropha H16 두 세균에 의한 공중합 PHA의 합성 및 미세구조적 특성 연구)

  • Jang, Young-Ok;Nam, Won;Choi, Mun-Hwan;Song, Jae-Jun;Yoon, Sung-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2000
  • Two typess of copolyesters, poly(3-hydroxybutyric acid-co-4-hydroxy-butyric acid)[P(3HB-co-4HB] and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid)[P(3HB-co-3HV)], with various monomer ratios and different degree of microstructural heterogeneity were synthesized from Ralstonia eutropha H16 and Hydrogenophaga pseudoflava by using ${\gamma}$-butyrolactone and ${\gamma}$-valerolactone, respectively. The two bacteria showed a large difference in the utilization of ${\gamma}$-butyrolactone for cell growth and PHA synthesis. H. pseudoflava synthesized P(3HB-co-4HB) copolyesters with a wide range of 4HB content from 13 to 96 mol% depending on culture conditions, whiel R. eutropha H16 was able to synthesize the copolyesters containing less than 20 mol% of 4HB. An increase in the 4HB content in the P(3HB-co-4HB) copolyesters synthesized by H. pseud-oflava induced an lowering of their melting temperatures as well as their enthalpies of fusion. The increase in the 4HB content, however, increased the rate of degradation by an extracellular P(3HB) depolymerase. NMR spectros-copy and differential scanning calorimetry showed that the P(3HB-co-4HB) copolyesters from H. pseudoflava were generally microstructurally heterogeneous. The P(3HB-co-4HB) copolyesters) synthesized by R. eutropha H16 were rather random copolymers showing less microstructural heterogeneity than those synthesized by H. pseudoflava. The NMR D value analysis suggested that the monomer distribution of the P(3HB-co-3HV) copolymers from the two bacteria were relatively random.

  • PDF

0.1 MW Test Bed CO2 Capture Studies with New Absorbent (KoSol-5) (신 흡수제(KoSol-5)를 적용한 0.1 MW급 Test Bed CO2 포집 성능시험)

  • Lee, Junghyun;Kim, Beom-Ju;Shin, Su Hyun;kwak, No-Sang;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2016
  • The absorption efficiency of amine $CO_2$ absorbent (KoSol-5) developed by KEPCO research institute was evaluated using a 0.1 MW test bed. The performance of post-combustion technology to capture two tons of $CO_2$ per day from a slipstream of the flue gas from a 500 MW coal-fired power station was first confirmed in Korea. Also the analysis of the absorbent regeneration energy was conducted to suggest the reliable data for the KoSol-5 absorbent performance. And we tested energy reduction effects by improving the absorption tower inter-cooling system. Overall results showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate : 90%) suggested by IEA-GHG. Also the regeneration energy of the KoSol-5 showed about $3.05GJ/tonCO_2$ which was about 25% reduction in the regeneration energy compared to that of using the commercial absorbent MEA (Monoethanolamine). Based on current experiments, the KoSol-5 absorbent showed high efficiency for $CO_2$ capture. It is expected that the application of KoSol-5 to commercial scale $CO_2$ capture plants could dramatically reduce $CO_2$ capture costs.

Continuous Hydrogen Production by Heterotrophic Growth of Citrobacter amalonaticus Y19 in Trickle Bed Reactor (Citrobacter amalonaticus Y19의 영양종속 성장을 이용한 Trickle Bed Reactor에서의 연속적인 수소생산)

  • Park, Ji-Young;Lee, Tae-Ho;Oh, You-Kwan;Kim, Jun-Rae;Seol, Eun-Hee;Jung, Gyoo-Yeol;Kim, Mi-Sun;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.458-463
    • /
    • 2005
  • [ $H_2$ ] from CO and water was continuously produced in a trickle bed reactor(TBR) using Citrobacter amalonaticus Y19. When the strain C. was cultivated in a stirred-tank reactor under a chemoheterotrophic and aerobic condition, the high final cell concentration of 13 g/L was obtained at 10 hr. When the culture was switched to an anaerobic condition with the continuous supply of gaseous CO, CO-dependent hydrogenase was fully induced and its hydrogen production activity approached 16 mmol/g cell/hr in 60 hr. The fully induced C. amalonaticus Y19 cells were circulated through a TBR packed with polyurethane foam, and the TBR was operated for more than 20 days for $H_2$ production. As gas retention time decreased or inlet CO partial pressure increased, $H_2$ production rate increased but the conversion from CO to $H_2$ decreased. The maximum $H_2$ production rate obtained was 16 mmol/L/hr at the gas retention time of 25 min and the CO inlet partial pressure of 0.4 atm. The high $H_2$ production rate was attributed to the high cell density in the liquid phase circulating the TBR as well as the high surface area of polyurethane foam used as packing material of the TBR.

Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture (연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성)

  • Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.