• Title/Summary/Keyword: Co-fire

Search Result 942, Processing Time 0.023 seconds

Development of Flooding and Overflow Simulation Technology for Rainwater Infiltration Storage Block Placement (빗물침투저류블록 설치 최적지 선정을 위한 침수범람 시뮬레이션 기술 개발)

  • Kim, Seongpyo;Ryu, Jungrim;Kim, Hojin;Choi, Heeyong;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • This study addresses the escalating flood damages prompted by recent climate shifts characterized by extreme weather events and proposes rainwater infiltration blocks as a potential solution. Recognizing the limitations inherent in existing inundation simulation methods, we advocate for the integration of novel functionalities, particularly leveraging drone technology. Our research endeavors encompass experimental assessments of inundation and flooding simulation technologies. These evaluations are conducted within areas where rainwater infiltration storage blocks have been implemented, juxtaposed against existing programs utilizing Digital Elevation Models(DEM) and Digital Surface Models(DSM). Through this comparative analysis and a meticulous scrutiny of the adaptability of inundation and flooding simulation to real-world deployment scenarios, we ascertain the efficacy of the simulation program as a decision-making tool for identifying optimal sites for rainwater infiltration storage block installation.

Comparison of the PO43- Ion Removal Efficiency Using Various PAC Coagulant Types in Sedimentation and Flotation Processes (침전 및 부상 공정에서 PAC 응집제 종류별 PO43- 이온 제거 효율 비교)

  • Jeong-Hak Choi;Ju-Seop Kim;Jong-Won Park;Seong-Kee Min;Hye-Yeon Lee;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.9
    • /
    • pp.667-674
    • /
    • 2024
  • In the present study, we aimed to determine the optimal polyaluminum chloride (PAC) dosage in raw water based on the PO43--P concentration using PAC coagulants with aluminum concentrations of 10%, 12%, and 17%. The correlation between the Al/P molar ratio and the removal efficiency of aggregated Al-PO43--P flocs was evaluated using sedimentation and flotation processes. As the PO43--P concentration in the raw water increased, the Al/P molar ratio gradually decreased from 6.14 to 1.98. The Al/P molar ratio of PAC formulations with higher aluminum contents showed a decreasing trend in the following order: PAC 17% < PAC 12% < PAC 10%. An increase in the Al/P molar ratio led to a slight increase in the average particle size of Al-PO43--P flocs formed during the coagulation process. At optimal Al/P molar ratios, PO43--P removal efficiency ranged from approximately 80% to 93% for both the coagulation/precipitation and coagulation/flotation processes. The coagulation/flotation process exhibited a slightly higher PO43--P removal efficiency than coagulation/precipitation.

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology (난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술)

  • Choi, Yo-Seok;Park, Ji-Won;Lee, Jung-Hun;Shin, Jae-Ho;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.

The Development of a Ship Firefighting Drill Simulator (선박소화훈련 시뮬레이터 개발에 관한 연구)

  • Kim, Won-Ouk;Kim, Dae-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.410-416
    • /
    • 2016
  • After the Sewol Ferry accident, the importance of maritime safety has been emphasized in Korea. In particular, educational and experience training are not only being conducted for maritime personnel but also in schools and at maritime-related organizations in order to broadly instill maritime safety awareness. Based on SOLAS regulations, safety education for sailors conducted every 10 days passenger boats, and fire-fighting drills and abandon-ship training should be conducted once a month on merchant ships. After the Sewol Ferry accident, the maximum number of trainees was reduced from 40 to 20 in order to improve the effectiveness of these training sessions by requiring all trainees to participate in the actual training. The current training process consists of two steps: textbook-based theoretical training and actual practice. Current training environment provides limited capability from human and facility recourses which limit the numbers of trainee participated and system operation time. By introducing the simulation training, it will improve the trainee skill and performance prior to the on-site training and allow the more effective and rapid progress on actual practice. Therefore, it will be proposed the three-step training method in order to improve the effectiveness on fire-fighting drill in Maritime Safety Education on this study. This study suggests a three step training method that would increase the efficiency of maritime safety education. An image-training step to enhance individual task awareness and equipment usage via simulation techniques after theoretical training has been added. To implement this simulation, a virtual training session will be conducted before actual training, based on knowledge obtained from theoretical training, which is expected to increase the speed with which trainees can adapt during the practical training session. In addition, due to the characteristics of the simulation, repeated training is possible for reaction drills in emergency circumstances and other various scenarios that are difficult to replicate in actual training. The efficiency of training is expected to improve because trainees will have practiced before practical training takes place, which will decrease the time needed for practical training and increase the number of training sessions that can be executed, increasing the efficiency of training overall. This study considers development methods for fire-fighting drill simulations using virtual reality techniques.

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.

An Economic Value for the First Precipitation Event during Changma Period (장마철 첫 강수의 경제적 가치)

  • Seo, Kyong-Hwan;Choi, Jin-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • This study evaluates the economic values for the several first precipitation events during Changma period. The selected three years are 2015, 2019, and 2020, where average precipitation amounts across the 58 Korean stations are 12.8, 20.1 and 13.3 mm, respectively. The four categories are used to assess the values including air quality improvement, water resource acquisition/accumulation, drought mitigation, and forest fire prevention/recovery. Economic values for these three years are estimated 50~150 billion won. Among the four factors considered, the effect of air quality improvement is most highly valued, amounting to 70 to 90% of the total economic values. Wet decomposition of air pollution (PM10, NO2, CO, and SO2) is the primary reason. The next valuable element is water resource acquisition, which is estimated 9~15 billion won. Effects of drought mitigation and fire prevention are deemed relatively small. This study is the first to estimate the value of the precipitation events during Changma onset. An analysis for more Changma years will be performed to achieve a more reliable estimate.

The Combustion Gas Hazard Assessment of Main Building Materials (주요 건축 재료별 연소가스 유해성 평가)

  • Kim, Jong-Buk;Lee, Si-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.639-654
    • /
    • 2016
  • This study building materials by relates to human hazard assessment in accordance with the combustion gas SEM, the flame-retardant foam FTIR and cone calorimeter to configure the Forest products of MDF and preservative treated Lauan two kinds of Retardant styrofoam, Styrofoam, Urethane foam and gypsum board four kinds of plastics material by the combustion gas were each analyzed. MDF was burned to the structure of the wood and the glue evenly mixed combustion area preservative treated Lauan, kept constant even in the form of high heat to penetrate deep into the wood flame retardant agents. Retardant styrofoam is due to feed my Dropped dissolved inorganic flame retardant without the fire-stick and confirmed that the weak form of gypsum board, but keep the column. In MDF ammonia ($NH_3$), lethal concentration (750 ppm) compared to 795 ppm, preservative treated Lauan is carbon dioxide ($CO_2$) that was greater than 2.5 times the lethal concentration (100,000 ppm) to 256,965 ppm, the lethal concentration (500 ppm) of hydrogen chloride (HCl). The Urethane greater than 697 ppm, 434 ppm also greatly exceeding the nitrogen dioxide ($NO_2$) lethal concentration (250 ppm) in Retardant styrofoam and 398 ppm was released. It is confirmed that the human body is extremely harmful gas emitted from most of the materials to be utilized as basic data for evaluating the hazard-specific human future building material.

Quality Changes in Pulp-containing Apple Juice upon Addition of Vitamin C (비타민 C 첨가에 따른 미세과육 함유 사과주스의 저장 중 품질변화)

  • Park, Nan-Young;Kim, Jae-Hhoa;Seo, Ji-Hyung;Woo, Sang-Cheul;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.17 no.4
    • /
    • pp.451-456
    • /
    • 2010
  • We investigated changes in the quality of pulp-containing apple juice, during storage, after addition of various amounts of vitamin C, which was stable over time. Neither sugar content nor acidity level varied when vitamin C was added. The pH was slightly lower (pH 4.29-4.30) in juice with added vitamin C than in unsupplemented juice (pH 4.40). The L and b color values fell as vitamin C content rose and the storage period was extended. In sensory evaluation tests, taste and overall acceptability were higher for juice to which vitamin C had been added to 0.02% (w/v) than for unsupplemented juice. Vitamin C levels fell less during storage at $4^{\circ}C$ than at higher temperatures. The alcohol-soluble color (ASC) value fell as the amount of added vitamin C rose, and tended to be lower when juice was stored at $4^{\circ}C$ compared to $37^{\circ}C$. In summary, apple juice containing pulp was optimally stored at $4^{\circ}C$ after addition of 0.02% (w/v) vitamin C

Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes (단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성)

  • Hwang, Woo Chae;Lee, Kil Sung;Cha, Cheon Seok;Kim, Ji Hoon;Ra, Seung Woo;Yang, In Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.959-965
    • /
    • 2014
  • In the present study, we aimed to obtain design data that can be used for the side members of lightweight cars by experimentally examining the types of effects that the changes in the section shape and outermost layer of an aluminum (Al)/carbon fiber reinforced plastic (CFRP) composite structural member have on its collapse characteristics. We have drawn the following conclusions based on the test results: The circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $0^{\circ}$ was observed to be 52.9 and 49.93 higher than that of the square and hat-shaped members, respectively. In addition, the energy absorption characteristic of the circular Al/CFRP composite impact-absorbing member in which the outermost layer angle was laminated at $90^{\circ}$ was observed to be 50.49 and 49.2 higher than that of the square and hat-shaped members, respectively.

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).