Browse > Article
http://dx.doi.org/10.5532/KJAFM.2021.23.1.15

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery  

Kang, Ye-Seong (Department of Agro-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science))
Park, Jun-Woo (Department of Agro-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science))
Jang, Si-Hyeong (Department of Agro-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science))
Song, Hye-Young (Department of Agro-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science))
Kang, Kyung-Suk (Department of Agro-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science))
Ryu, Chan-Seok (Department of Agro-System Engineering, GyeongSang National University (Institute of Agriculture & Life Science))
Kim, Seong-Heon (Granduate School of Bioresource and Bioenvironmental Science, Kyushu Universtiy)
Jun, Sae-Rom (Hortizen Co. Ltd.)
Kang, Tae-Hwan (Bio Industry Mechanical Engineering, Kongju National Universtiy)
Kim, Gul-Hwan (National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.23, no.1, 2021 , pp. 15-33 More about this Journal
Abstract
In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.
Keywords
Fire blight; Hyperspectral image; Machine learning; Decision tree; Multispectral image sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smits, P. C., S. G. Dellepiane, and R. A. Schowengerdt, 1999: Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. International journal of remote sensing 20(8), 1461-1486.   DOI
2 Suarez, L. A., A. Apan, and J. Werth, 2016: Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield. ISPRS Journal of Photogrammetry and Remote Sensing 120, 65-76.   DOI
3 Sun, W., L. Zhang, B. Du, W. Li, and Y. M. Lai, 2015: Band selection using improved sparse subspace clustering for hyperspectral imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8, 2784-2797.   DOI
4 Thomson, S. V., S. C. Gouk, and J. P. Paulin, 1998: Efficacy of BION®(Actigard®) to control fire blight in pear and apple orchards in USA, New Zealand and France. In VIII International Workshop on Fire Blight 489, 589-596.
5 Tomassen, F. H. M., A. De Koeijer, M. C. M. Mourits, A. Dekker, A. Bouma, and R. B. M. Huirne, 2002: A decision-tree to optimise control measures during the early stage of a foot-andmouth disease epidemic. Preventive Veterinary Medicine 54(4), 301-324.   DOI
6 Jarolmasjed, S., S. Kostick, Y. Si, J. Quiros, A. Marzougui, K. Evans, and S. Sankaran, 2019: High-Throughput Phenotyping of Fire Blight Disease Symptoms Using Sensing Techniques in Apple. Frontiers in plant science 10, 576.   DOI
7 Jock, S., V. Donat, M. M. López, C. Bazzi, and K. Geider, 2002: Following spread of fire blight in Western, Central and Southern Europe by molecular differentiation of Erwinia amylovora strains with PFGE analysis. Environmental Microbiology 4(2), 106-114.   DOI
8 Kang, Y. S., C. S. Ryu, S. R. Jun, S. H. Jang, J. W. Park, H. Y. Song, T. K. Sarkar, S. H. Kim, and W. S. Lee, 2018: Distinguishing between closely related species of Allium and of Brassicaceae by narrowband hyperspectral imagery. Biosystems Engineering 176, 103-113.   DOI
9 Kimura, R., S. Okada, H. Miura, and M. Kamichika, 2004: Relationships among the leaf area index, moisture availability, and spectral reflectance in an upland rice field. Agricultural Water Management 69(2), 83-100.   DOI
10 Kim, W. S., M. Hildebrand, S. Jock, and K. Geider, 2001: Molecular comparison of pathogenic bacteria from pear trees in Japan and the fire blight pathogen Erwinia amylovora. Microbiology 147 (11), 2951-2959.   DOI
11 Kumar, A., W. S. Lee, R. J. Ehsani, L. G. Albrigo, C. Yang, and R. L. Mangan, 2012: Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques. Journal of Applied Remote Sensing, 6(1), 063542.   DOI
12 Landis, J. R., and G. G. Koch, 1977: The measurement of observer agreement for categorical data. Biometrics, 159-174.
13 Leucker, M., A. K. Mahlein, U. Steiner, and E. C. Oerke, 2015: Improvement of lesion phenotyping in Cercospora beticola-sugar beet interaction by hyperspectral imaging. Phytopathology 106(2), 177-184.   DOI
14 Marlin, B., K. Swersky, B. Chen, and N. Freitas, 2010: Inductive principles for restricted Boltzmann machine learning. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 509-516.
15 Li, S., Z. Zheng, Y. Wang, C. Chang, and Y. Yu, 2016: A new hyperspectral band selection and classification framework based on combining multiple classifiers. Pattern Recognition Letters 83, 152-159.   DOI
16 Mahlein, A. K., 2016: Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping. Plant disease 100(2), 241-251.   DOI
17 Mahlein, A. K., U. Steiner, C. Hillnhutter, H. W. Dehne, and E. C. Oerke, 2012: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant methods 8(1), 3.   DOI
18 Calderon, R., J. A. Navas-Cortes, C. Lucena, and P. J. Zarco-Tejada, 2013: High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment 139, 231-245.   DOI
19 Medjahed, S. A., T. A. Saadi, A. Benyettou, and M. Ouali, 2016: Gray wolf optimizer for hyperspectral band selection. Applied Soft Computing 40, 178-186.   DOI
20 Norelli, J. L., A. L. Jones, and H. S. Aldwinckle, 2003: Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Disease 2003 87(7), 756-765.   DOI
21 Foody, G. M., 2002: Status of land cover classification accuracy assessment. Remote sensing of environment 80(1), 185-201.   DOI
22 Chan, J. C. W., and D. Paelinckx, 2008: Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment 112, 2999-3011.   DOI
23 Deng, X., Q. Liu, Y. Deng, and S. Mahadevan, 2016: An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences 340, 250-261.   DOI
24 Du, H., H. Qi, X. Wang, R. Ramanath, and W. E. Snyder, 2003: Band selection using independent component analysis for hyperspectral image processing. In: 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings. IEEE, 93-98.
25 Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote sensing of Environment 114, 168-182.   DOI
26 Holasek, R., K. Nakanishi, L. Ziph-Schatzberg, J. Santman, P. Woodman, R. Zacaroli, and R. Wiggins, 2017: The selectable hyperspectral airborne remote sensing kit (SHARK) as an enabler for precision agriculture. Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 10213, 1021304
27 Goel, P. K., S. O. Prasher, R. M. Patel, J. A. Landry, R. B. Bonnell, and A. A. Viau, 2003: Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture 39(2), 67-93.   DOI
28 Gusberti, M., U. Klemm, M. S. Meier, M. Maurhofer, and I. Hunger-Glaser, 2015: Fire blight control: the struggle goes on. A comparison of different fire blight control methods in Switzerland with respect to biosafety, efficacy and durability. International journal of environmental research and public health 12(9), 11422-11447.   DOI
29 Hasler, T., H. J. Schaerer, E. Holliger, J. Vogelsanger, A. Vignutelli, and B. Schoch, 2001: Fire blight situation in Switzerland. IX International Workshop on Fire Blight 590, 73-79.
30 Hinze, M., L. Kohl, S. Kunz, S. WeiBhaupt, M. Ernst, A. Schmid, and R. T. Voegele, 2016: Real-time PCR detection of Erwinia amylovora on blossoms correlates with subsequent fire blight incidence. Plant Pathology 65(3), 462-469.   DOI
31 Jaillais, B., P. Roumet, L. Pinson-Gadais, and D. Bertrand, 2015: Detection of Fusarium head blight contamination in wheat kernels by multivariate imaging. Food Control 54, 250-258.   DOI
32 Apan, A., A. Held, S. Phinn, and J. Markley, 2004: Detecting sugarcane 'orange rust'disease using EO-1 Hyperion hyperspectral imagery. International journal of remote sensing 25(2), 489-498.   DOI
33 Bagheri, N., H. Mohamadi-Monavar, A. Azizi, and A. Ghasemi, 2018: Detection of Fire Blight disease in pear trees by hyperspectral data. European Journal of Remote Sensing 51(1), 1-10.   DOI
34 Bahadou, S. A., A. Ouijja, A. Karfach, A. Tahiri, and R. Lahlali, 2018: New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microbial pathogenesis 117, 7-15.   DOI
35 Acimovic, S. G., Q. Zeng, G. C. McGhee, G. W. Sundin, and J. C. Wise, 2015: Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesisrelated protein genes. Frontiers in plant science 6, 16.   DOI
36 Berni, J. A. J., P. J. Zarco-Tejada, G. Sepulcre-Canto, E. Fereres, and F. Villalobos, 2009: Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment 113(11), 2380-2388.   DOI
37 Breiman, L., J. Friedman, R. Olshen, and C. Stone, 1984: Classification and regression trees-crc press. Boca Raton, Florida.
38 Buchanan, G. E., and M. P. Starr, 1980: Phytotoxic material from associations betweenErwinia amylovora and pear tissue culture: Possible role in necrotic symptomatology of fireblight disease. Current Microbiology 4(2), 63-68.   DOI
39 Tooke, T. R., N. C. Coops, N. R. Goodwin, and J. A. Voogt, 2009: Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sensing of Environment 113(2), 398-407.   DOI
40 Broggini, G. A., B. Duffy, E. Holliger, H. J. Scharer, C. Gessler, and A. Patocchi, 2005: Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard. European journal of plant pathology 111(2), 93-100.   DOI
41 Trilla, G. G., P. Pratolongo, P. Kandus, M. E. Beget, C. Di Bella, and J. Marcovecchio, 2016: Relationship between biophysical parameters and synthetic indices derived from hyperspectral field data in a salt marsh from Buenos Aires Province, Argentina. Wetlands 36(1), 185-194.   DOI
42 Van Der Zwet, Tom, and Harry Louis Keil, 1979: Fire blight. US Government Printing Office, 21-26.
43 Yue, J., G. Yang, C. Li, Z. Li, Y. Wang, H. Feng, and B. Xu, 2017: Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing 9(7), 708.   DOI
44 Zarco-Tejada, P. J., V. Gonzalez-Dugo, and J. A. Berni, 2012: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote sensing of environment 117, 322-337.   DOI
45 Zhang, M., Z. Qin, X. Liu, and S. L. Ustin, 2003: Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 4(4), 295-310.   DOI
46 Ray, S. S., J. P. Singh, and S. Panigrahy, 2010: Use of hyperspectral remote sensing data for crop stress detection: ground-based studies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science 38(Part 8).
47 Zhou, R., S. I. Kaneko, F. Tanaka, M. Kayamori, and M. Shimizu, 2015: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition. Computers and Electronics in Agriculture 116, 65-79.   DOI
48 Pu, Y. Y., and D. W. Sun, 2016: Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innovative Food Science & Emerging Technologies 33, 348-356.   DOI
49 Qiu, R., C. Yang, A. Moghimi, M. Zhang, and B. Steffenson, 2019: Detection of Fusarium Head Blight in Wheat Using a Deep Neural Network and Color Imaging. Preprints.
50 Ray, S. S., N. Jain, R. K. Arora, S. Chavan, and S. Panigrahy, 2011: Utility of hyperspectral data for potato late blight disease detection. Journal of the Indian Society of Remote Sensing 39(2), 161-169.   DOI
51 Ryu, C., M. Suguri, and M. Umeda, 2011: Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing. Field Crops Research 122(3), 214-224.   DOI
52 Sarhrouni, E., A. Hammouch, and D. Aboutajdine, 2012: Dimensionality reduction and classification feature using mutual information applied to hyperspectral images: a filter strategy based algorithm. arXiv preprint arXiv :1210.0052.
53 Smail, A. B., O. U. I. J. J. A. Abderrahman, and T. A. H. I. R. I. Abdessalem, 2016: Evaluation of biological control agent Pantoea agglomerans P10c against fire blight in Morocco. African Journal of Agricultural Research 11(18), 1661-1667.   DOI
54 Schoofs, H., S. Delalieux, T. Deckers, and D. Bylemans, 2020: Fire Blight Monitoring in Pear Orchards by Unmanned Airborne Vehicles (UAV) Systems Carrying Spectral Sensors. Agronomy 10(5), 615.   DOI